ﻻ يوجد ملخص باللغة العربية
In Kohn-Sham electronic structure computations, wave functions have singularities at nuclear positions. Because of these singularities, plane-wave expansions give a poor approximation of the eigenfunctions. In conjunction with the use of pseudo-potentials, the PAW (projector augmented-wave) method circumvents this issue by replacing the original eigenvalue problem by a new one with the same eigenvalues but smoother eigenvectors. Here a slightly different method, called VPAW (variational PAW), is proposed and analyzed. This new method allows for a better convergence with respect to the number of plane-waves. Some numerical tests on an idealized case corroborate this efficiency.
In this article, a numerical analysis of the projector augmented-wave (PAW) method is presented, restricted to the case of dimension one with Dirac potentials modeling the nuclei in a periodic setting. The PAW method is widely used in electronic ab i
In solid-state physics, energies of crystals are usually computed with a plane-wave discretization of Kohn-Sham equations. However the presence of Coulomb singularities requires the use of large plane-wave cut-offs to produce accurate numerical resul
The so-called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U) has been implemented within the all-electron projector augmented-wave method (PAW), and then used to compute the insulating antiferromagnetic ground sta
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wav
We present valence electron Compton profiles calculated within the density-functional theory using the all-electron full-potential projector augmented-wave method (PAW). Our results for covalent (Si), metallic (Li, Al) and hydrogen-bonded ((H_2O)_2)