ﻻ يوجد ملخص باللغة العربية
We consider the problem of finding a model-free upper bound on the price of an American put given the prices of a family of European puts on the same underlying asset. Specifically we assume that the American put must be exercised at either $T_1$ or $T_2$ and that we know the prices of all vanilla European puts with these maturities. In this setting we find a model which is consistent with European put prices and an associated exercise time, for which the price of the American put is maximal. Moreover we derive a cheapest superhedge. The model associated with the highest price of the American put is constructed from the left-curtain martingale transport of Beiglb{o}ck and Juillet.
The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) =
A make-your-mind-up option is an American derivative with delivery lags. We show that its put option can be decomposed as a European put and a new type of American-style derivative. The latter is an option for which the investor receives the Greek Th
We call a given American option representable if there exists a European claim which dominates the American payoff at any time and such that the values of the two options coincide in the continuation region of the American option. This concept has in
Developments in finance industry and academic research has led to innovative financial products. This paper presents an alternative approach to price American options. Our approach utilizes famous cite{heath1992bond} (HJM) technique to calculate Amer
We analyze and calculate the early exercise boundary for a class of stationary generalized Black-Scholes equations in which the volatility function depends on the second derivative of the option price itself. A motivation for studying the nonlinear B