Fix $d ge 2$ and a field $k$ such that $mathrm{char}~k mid d$. Assume that $k$ contains the $d$th roots of $1$. Then the irreducible components of the curves over $k$ parameterizing preperiodic points of polynomials of the form $z^d+c$ are geometrically irreducible and have gonality tending to $infty$. This implies the function field analogue of the strong uniform boundedness conjecture for preperiodic points of $z^d+c$. It also has consequences over number fields: it implies strong uniform boundedness for preperiodic points of bounded eventual period, which in turn reduces the full conjecture for preperiodic points to the conjecture for periodic points.