ترغب بنشر مسار تعليمي؟ اضغط هنا

Pillars of creation amongst destruction: Star formation in molecular clouds near R136 in 30 Doradus

67   0   0.0 ( 0 )
 نشر من قبل Venu Kalari
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New sensitive CO(2-1) observations of the 30 Doradus region in the Large Magellanic Cloud are presented. We identify a chain of three newly discovered molecular clouds we name KN1, KN2 and KN3 lying within 2--14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H$_2$ 2.12$mu$m emission is spatially coincident with the molecular clouds, but ionized Br$gamma$ emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing towards R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.



قيم البحث

اقرأ أيضاً

We present $mathrm{^{12}CO}$ and $mathrm{^{13}CO}$ molecular gas data observed by ALMA, massive early stage young stellar objects identified by applying color-magnitude cuts to textit{Spitzer} and textit{Herschel} photometry, and low-mass late stage young stellar objects identified via H$mathrm{alpha}$ excess. Using dendrograms, we derive properties for the molecular cloud structures. This is the first time a dendrogram analysis has been applied to extragalactic clouds. The majority of clumps have a virial parameter equal to unity or less. The size-linewidth relations of $mathrm{^{12}CO}$ and $mathrm{^{13}CO}$ show the clumps in this study have a larger linewidth for a given size (by factor of 3.8 and 2.5, respectively) in comparison to several, but not all, previous studies. The larger linewidths in 30 Doradus compared to typical Milky Way quiescent clumps are probably due to the highly energetic environmental conditions of 30 Doradus. The slope of the size-linewidth relations of $mathrm{^{12}CO}$, 0.65 $pm$ 0.04, and $mathrm{^{13}CO}$, 0.97 $pm$ 0.12, are on the higher end but consistent within 3$mathrm{sigma}$ of previous studies. Massive star formation occurs in clumps with high masses ($> 1.83 times 10^{2};mathrm{M_{odot}}$), high linewidths (v $> 1.18;mathrm{km/s}$), and high mass densities ($> 6.67 times 10^{2};mathrm{M_{odot};pc^{-2}}$). The majority of embedded, massive young stellar objects are associated with a clump. However the majority of more evolved, low-mass young stellar objects are not associated with a clump.
Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations cle arly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136.
We study the hierarchical stellar structures in a $sim$1.5 deg$^2$ area covering the 30 Doradus-N158-N159-N160 star-forming complex with the VISTA Survey of the Magellanic Clouds. Based on the young upper main-sequence stars, we find that the surface densities cover a wide range of values, from log($Sigmacdot$pc$^2$) $lesssim$ $-$2.0 to log($Sigmacdot$pc$^2$) $gtrsim$ 0.0. Their distributions are highly non-uniform, showing groups that frequently have sub-groups inside. The sizes of the stellar groups do not exhibit characteristic values, and range continuously from several parsecs to more than 100 pc; the cumulative size distribution can be well described by a single power law, with the power-law index indicating a projected fractal dimension $D_2$ = 1.6 $pm$ 0.3. We suggest that the phenomena revealed here support a scenario of hierarchical star formation. Comparisons with other star-forming regions and galaxies are also discussed.
135 - R. Retes-Romero 2017
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac h IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).
139 - Sherry C. C. Yeh 2015
We present the first fully calibrated H$_2$, 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-Field Infrared Imager on the CTIO 4-meter Blanco Telescope. Together with a NEWFIRM Br$gamma$ i mage of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H$_2$-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are photodissociation regions viewed edge-on. Based on the morphologies of H$_2$, Br$gamma$, $^{12}$CO, and 8$mu$m emission, the H$_2$ to Br$gamma$ line ratio and Cloudy models, we find that the H$_2$ emission is formed inside the photodissociation regions of 30 Doradus, 2 - 3 pc to the ionization front of the HII region, in a relatively low-density environment $<$ 10$^4$ cm$^{-3}$. Comparisons with Br$gamma$, 8$mu$m, and CO emission indicate that H$_2$ emission is due to fluorescence, and provide no evidence for shock excited emission of this line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا