ﻻ يوجد ملخص باللغة العربية
Motivated by the important archaeological application of exploring cultural heritage objects, in this paper we study the challenging problem of automatically segmenting curve structures that are very weakly stamped or carved on an object surface in the form of a highly noisy depth map. Different from most classical low-level image segmentation methods that are known to be very sensitive to the noise and occlusions, we propose a new supervised learning algorithm based on Convolutional Neural Network (CNN) to implicitly learn and utilize more curve geometry and pattern information for addressing this challenging problem. More specifically, we first propose a Fully Convolutional Network (FCN) to estimate the skeleton of curve structures and at each skeleton pixel, a scale value is estimated to reflect the local curve width. Then we propose a dense prediction network to refine the estimated curve skeletons. Based on the estimated scale values, we finally develop an adaptive thresholding algorithm to achieve the final segmentation of curve structures. In the experiment, we validate the performance of the proposed method on a dataset of depth images scanned from unearthed pottery sherds dating to the Woodland period of Southeastern North America.
The surfaces of many cultural heritage objects were embellished with various patterns, especially curve patterns. In practice, most of the unearthed cultural heritage objects are highly fragmented, e.g., sherds of potteries or vessels, and each of th
Ultrasound scanning is essential in several medical diagnostic and therapeutic applications. It is used to visualize and analyze anatomical features and structures that influence treatment plans. However, it is both labor intensive, and its effective
Archives play a crucial role in the construction and advancement of society. Humans place a great deal of trust in archives and depend on them to craft public policies and to preserve languages, cultures, self-identity, views and values. Yet, there a
For a long time, RBS and PIXE techniques have been used in the field of cultural heritage. Although the complementarity of both techniques has long been acknowledged, its full potential has not been yet developed due to the lack of general purpose so
One of the practical choices for making a lightweight semantic segmentation model is to combine a depth-wise separable convolution with a dilated convolution. However, the simple combination of these two methods results in an over-simplified operatio