ﻻ يوجد ملخص باللغة العربية
We study the possibility of generating non-zero reactor mixing angle $theta_{13}$ and baryon asymmetry of the Universe within the framework of an $A_4$ flavour symmetric model. Using the conventional type I seesaw mechanism we construct the Dirac and Majorana mass matrices which give rise to the correct light neutrino mass matrix. Keeping the right handed neutrino mass matrix structure trivial so that it gives rise to a (quasi) degenerate spectrum of heavy neutrinos suitable for resonant leptogenesis at TeV scale, we generate the non-trivial structure of Dirac neutrino mass matrix that can lead to the light neutrino mixing through type I seesaw formula. Interestingly, such a setup naturally leads to non-zero $theta_{13}$ due to the existence of anti-symmetric contraction of the product of two triplet representations of $A_4$. Such antisymmetric part of triplet products usually vanish for right handed neutrino Majorana mass terms, leading to $mu-tau$ symmetric scenarios in the most economical setups. We constrain the model parameters from the requirement of producing the correct neutrino data as well as baryon asymmetry of the Universe for right handed neutrino mass scale around TeV. The $A_4$ symmetry is augmented by additional $Z_3 times Z_2$ symmetry to make sure that the splitting between right handed neutrinos required for resonant leptogenesis is generated only by next to leading order terms, making it naturally small. We find that the inverted hierarchical light neutrino masses give more allowed parameter space consistent with neutrino and baryon asymmetry data.
In this paper, we consider a neutrino mass model based on $A_4$ symmetry. The spontaneous symmetry breaking in this model is chosen to obtain tribimaximal mixing in the neutrino sector. We introduce $Z_2 times Z_2$ invariant perturbations in this mod
We discuss an inverse seesaw model based on right-handed fermion specific $U(1)$ gauge symmetry and $A_4$-modular symmetry. These symmetries forbid unnecessary terms and restrict structures of Yukawa interactions which are relevant to inverse seesaw
Assuming that neutrinos acquire radiative seesaw Majorana masses through their interactions with dark matter, i.e. scotogenic from the Greek scotos meaning darkness, and using the non-Abelian discrete symmetry $A_4$, we propose a model of neutrino ma
In this work, we explain three beyond standard model (BSM) phenomena, namely neutrino masses, the baryon asymmetry of the Universe and Dark Matter, within a single model and in each explanation the right handed (RH) neutrinos play the prime role. Ind
Assuming that the neutrino mass matrix is diagonalized by the tribimaximal mixing matrix, we explore the textures for the charged lepton mass matrix that render an $U_{PMNS}$ lepton mixing matrix consistent with data. In particular we are interested