ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector

64   0   0.0 ( 0 )
 نشر من قبل Noel Wan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum emitters in solids are being developed for a range of quantum technologies, including quantum networks, computing, and sensing. However, a remaining challenge is the poor photon collection due to the high refractive index of most host materials. Here we overcome this limitation by introducing monolithic parabolic reflectors as an efficient geometry for broadband photon extraction from quantum emitter and experimentally demonstrate this device for the nitrogen-vacancy (NV) center in diamond. Simulations indicate a photon collection efficiency exceeding 75% across the visible spectrum and experimental devices, fabricated using a high-throughput gray-scale lithography process, demonstrate a photon extraction efficiency of $(48pm 5)$%. This device enables a raw experimental efficiency of $(12pm 2)$% with fluorescence detection rates as high as $(4.6 - 5.7)times 10^6$ counts per second from a single NV center.



قيم البحث

اقرأ أيضاً

Quantum computers have the potential to speed up certain problems that are hard for classical computers. Hybrid systems, such as the nitrogen vacancy (NV) center in diamond, are among the most promising systems to implement quantum computing, provide d the control of the different types of qubits can be efficiently implemented. In the case of the NV center, the anisotropic hyperfine interaction allows one to control the nuclear spins indirectly, through gate operations targeting the electron spin, combined with free precession. Here we demonstrate that this approach allows one to implement a full quantum algorithm, using the example of Grovers quantum search in a single NV center, whose electron is coupled to a carbon nuclear spin. The results clearly demonstrate the advantage of the quantum algorithm over the classical case.
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications. Due to the spatial localization of the defect states, these deep defects can be considered as artificial atoms/molecules in a solid state matrix. Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers and correctly predict properties that single-particle treatments fail to obtain. We choose the negatively charged nitrogen-vacancy (NV$^-$) center in diamond as the prototype defect to study with these techniques due to its importance for quantum information applications and because its properties are well-known, which makes it an ideal benchmark system. By properly accounting for electron correlations and including spin-orbit coupling and dipolar spin-spin coupling in the quantum chemistry calculations, for the NV$^-$ center in diamond clusters, we are able to: (i) show the correct splitting of the ground (first-excited) triplet state into two levels (four levels), (ii) calculate zero-field splitting values of the ground and excited triplet states, in good agreement with experiment, and (iii) calculate the energy differences between ground and exited spin-triplet and spin-singlet states, as well as their ordering, which are also found to be in good agreement with recent experimental data. The numerical procedure we have developed is general and it can screen other color centers whose properties are not well known but promising for applications.
159 - H.Y. Chen , E. R. MacQuarrie , 2018
We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain-coupled to an NV centers orbital state s, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multi-phonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude, and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV center orbital states.
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar e shifted due to the Doppler effect. When the control and probe fields are incident to the NV center from the same direction, the two-photon resonance still holds as the Doppler shifts of the two fields are the same. Thus, due to the electromagnetically-induced transparency (EIT), the probe light can pass through the NV center nearly without absorption. However, when the two fields propagate in opposite directions, the probe light can not effectively pass through the NV center as a result of the breakdown of two-photon resonance.
Many applications of nitrogen-vacancy (NV) centers in diamond crucially rely on a spectrally narrow and stable optical zero-phonon line transition. Though many impressive proof-of-principle experiments have been demonstrated, much work remains in eng ineering NV centers with spectral properties that are sufficiently robust for practical implementation. To elucidate the mechanisms underlying their interactions with the environment, we apply multi-dimensional coherent spectroscopy to an NV center ensemble in bulk diamond at cryogenic temperatures. Our spectra reveal thermal dephasing due to quasi-localized vibrational modes as well as ultrafast spectral diffusion on the picosecond timescale. The intrinsic, ensemble-averaged homogeneous linewidth is found to be in the tens of GHz range by extrapolating to zero temperature. We also observe a temperature-dependent Stark splitting of the excited state manifold, relevant to NV sensing protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا