ﻻ يوجد ملخص باللغة العربية
A main goal of NASAs Kepler Mission is to establish the frequency of potentially habitable Earth-size planets (eta Earth). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from the analysis of the flux centroids of the Kepler observations themselves. While many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a different star than the target along the same line of sight. If that were the case, a planet that appears small enough to be rocky may actually be considerably larger and therefore less interesting from the point of view of habitability. We take this into consideration here, and are able to validate 15 of our candidates at a 99.73% (3 sigma) significance level or higher, and the other three at slightly lower confidence. We characterize the GKM host stars using available ground-based observations and provide updated parameters for the planets, with sizes between 0.8 and 2.9 Earth radii. Seven of them (KOI-0438.02, 0463.01, 2418.01, 2626.01, 3282.01, 4036.01, and 5856.01) have a better than 50% chance of being smaller than 2 Earth radii and being in the habitable zone of their host stars.
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. F
The NASA Kepler mission has discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrance rate of terrestrial-size planets within the H
Kepler-62f is the first exoplanet small enough to plausibly have a rocky composition orbiting within the habitable zone (HZ) discovered by the Kepler Mission. The planet is 1.4 times the size of the Earth and has an orbital period of 267 days. At the
We present the results of an independent search of all ~200,000 stars observed over the four year Kepler mission (Q1-Q17) for multiplanet systems, using a three-transit minimum detection criteria to search orbital periods up to hundreds of days. We i
We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R_PL = 10.12 pm 0.56 R_E) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false positive tests yielded