ﻻ يوجد ملخص باللغة العربية
Being inspired by childs learning experience - taught first and followed by observation and questioning, we investigate a critically supervised learning methodology for object detection in this work. Specifically, we propose a taught-observe-ask (TOA) method that consists of several novel components such as negative object proposal, critical example mining, and machine-guided question-answer (QA) labeling. To consider labeling time and performance jointly, new evaluation methods are developed to compare the performance of the TOA method, with the fully and weakly supervised learning methods. Extensive experiments are conducted on the PASCAL VOC and the Caltech benchmark datasets. The TOA method provides significantly improved performance of weakly supervision yet demands only about 3-6% of labeling time of full supervision. The effectiveness of each novel component is also analyzed.
Weakly-supervised object detection has recently attracted increasing attention since it only requires image-levelannotations. However, the performance obtained by existingmethods is still far from being satisfactory compared with fully-supervised obj
The classification and regression head are both indispensable components to build up a dense object detector, which are usually supervised by the same training samples and thus expected to have consistency with each other for detecting objects accura
Learning to localize and name object instances is a fundamental problem in vision, but state-of-the-art approaches rely on expensive bounding box supervision. While weakly supervised detection (WSOD) methods relax the need for boxes to that of image-
Radar is usually more robust than the camera in severe driving scenarios, e.g., weak/strong lighting and bad weather. However, unlike RGB images captured by a camera, the semantic information from the radar signals is noticeably difficult to extract.
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rather than e.g. pixels. For this ta