ﻻ يوجد ملخص باللغة العربية
We present results for the renormalization of gauge invariant nonlocal fermion operators which contain a Wilson line, to one loop level in lattice perturbation theory. Our calculations have been performed for Wilson/clover fermions and a wide class of Symanzik improved gluon actions. The extended nature of such `long-link operators results in a nontrivial renormalization, including contributions which diverge linearly as well as logarithmically with the lattice spacing, along with additional finite factors. We present nonperturbative prescriptions to extract the linearly divergent contributions.
We investigate the renormalization of a class of gauge-invariant nonlocal quark bilinear operators, including a finite-length Wilson-line (called Wilson-line operators). The matrix elements of these operators are involved in the recent quasi-distribu
Quark bilinear operators with staple-shaped Wilson lines are used to study transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice quantum chromodynamics (QCD). Here, the renormalization factors for the isovector operators,
In this paper, we examine the effect of nonzero quark masses on the renormalization of gauge-invariant nonlocal quark bilinear operators, including a finite-length Wilson line (called Wilson-line operators). These operators are relevant to the defini
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nuc
Using the non-perturbative renormalization technique, we calculate the renormalization factors for quark bilinear operators made of overlap fermions on the lattice. The background gauge field is generated by the JLQCD and TWQCD collaborations includi