ﻻ يوجد ملخص باللغة العربية
We generalize normal mode expansion of Greens tensor $bar{bar{G}}(bf{r},bf{r})$ to lossy resonators in open systems, resolving a longstanding open challenge. We obtain a simple yet robust formulation, whereby radiation of energy to infinity is captured by a complete, discrete set of modes, rather than a continuum. This enables rapid simulations by providing the spatial variation of $bar{bar{G}}(bf{r},bf{r})$ over both $bf{r}$ and $bf{r}$ in one simulation. Few eigenmodes are often necessary for nanostructures, facilitating both analytic calculations and unified insight into computationally intensive phenomena such as Purcell enhancement, radiative heat transfer, van der Waals forces, and F{o}rster resonance energy transfer. We bypass all implementation and completeness issues associated with the alternative quasinormal eigenmode methods, by defining modes with permittivity rather than frequency as the eigenvalue. We obtain true stationary modes that decay rather than diverge at infinity, and are trivially normalized. Completeness is achieved both for sources located within the inclusion and the background through use of the Lippmann-Schwinger equation. Modes are defined by a linear eigenvalue problem, readily implemented using any numerical method. We demonstrate its simple implementation on COMSOL Multiphysics, using the default inbuilt tools. Results were validated against direct scattering simulations, including analytical Mie theory, attaining arbitrarily accurate agreement regardless of source location or detuning from resonance.
A general analytic form of the full 6x6 dyadic Greens function of a spherically symmetric open optical system is presented, with an explicit solution provided for a homogeneous sphere in vacuum. Different spectral representations of the Greens functi
The resonant state expansion (RSE), a novel perturbation theory of Brillouin-Wigner type developed in electrodynamics [Muljarov, Langbein, and Zimmermann, Europhys. Lett., 92, 50010(2010)], is applied to planar, effectively one-dimensional optical sy
Our series of recent work on the transmission coefficient of open quantum systems in one dimension will be reviewed. The transmission coefficient is equivalent to the conductance of a quantum dot connected to leads of quantum wires. We will show that
The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system.
Modal expansion is an attractive technique for solving electromagnetic scattering problems. With the one set of resonator modes, calculated once and for all, any configuration of near-field or far-field sources can be obtained almost instantaneously.