ﻻ يوجد ملخص باللغة العربية
I review massive star formation in our Galaxy, focusing on initial conditions in Infrared Dark Clouds (IRDCs), including the search for massive pre-stellar cores (PSCs), and modeling of later stages of massive protostars, i.e., hot molecular cores (HMCs). I highlight how developments in astrochemistry, coupled with rapidly improving theoretical/computational and observational capabilities are helping to improve our understanding of the complex process of massive star formation.
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of
We present high resolution (0.2, 1000 AU) 1.3 mm ALMA observations of massive infrared dark cloud clump, G028.37+00.07-C1, thought to harbor the early stages of massive star formation. Using $rm N_2D^+$(3-2) we resolve the previously identified C1-S
Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On
The role played by gravity in the transfer of interstellar matter from molecular cloud scales to protostellar scales is still highly debated. Only detailed studies on the kinematics of large samples of star-forming clouds will settle the issue. We pr