ﻻ يوجد ملخص باللغة العربية
New materials aim at exploiting the great control of living organisms over molecular architectures and minerals. Optical biomimetics has been widely developed by microengineering, leading to photonic components with order resembling those found in plants and animals. These systems, however, are realized by complicated and adverse processes. Here we show how biomineralization might enable the one-step generation of components for amorphous photonics, in which light is made to travel through disordered scattering systems, and particularly of active devices such as random lasers, by using electrospun fiber templates. The amount of bio-enzymatically produced silica is related to light-scattering capacity and the resulting organosilica surfaces exhibit a transport mean free path for light as low as 3 micron, and lasing with linewidth below 0.2 nm. The resulting, complex optical material is characterized and modelled to elucidate scattered fields and lasing performance. Tightly-controlled nanofabrication of direct biological inspiration establishes a new concept for the additive manufacturing of engineered light-diffusing materials and photonic components, not addressed by existing technologies.
Complex assemblies of light-emitting polymer nanofibers with molecular materials exhibiting optical gain can lead to important advance to amorphous photonics and to random laser science and devices. In disordered mats of nanofibers, multiple scatteri
Solitons, as stable localized wave packets that can propagate long distance in dispersive media without changing their shapes, are ubiquitous in nonlinear physical systems. Since the first experimental realization of optical bright solitons in the an
We report on a comprehensive study of the unique adhesive properties of mats of polymethylmethacrylate (PMMA) nanofibers produced by electrospinning. Fibers are deposited on glass, varying the diameter and the relative orientation of the polymer fila
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e
The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables usin