ﻻ يوجد ملخص باللغة العربية
Understanding the formation and evolution of our Galaxy requires accurate distances, ages and chemistry for large populations of field stars. Here we present several updates to our spectro-photometric distance code, that can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectro-photometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called {tt StarHorse}) can acommodate different observational datasets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known {it Gaia}-like parallaxes. The typical internal precision (obtained from realistic simulations of an APOGEE+Gaia-like sample) are $simeq 8%$ in distance, $simeq 20%$ in age,$simeq 6 %$ in mass, and $simeq 0.04$ mag in $A_V$. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of $simeq [0,2]%$ for distances, $simeq [12,31]%$ for ages, $simeq [4,12]%$ for masses, and $simeq 0.07$ mag for $A_V$. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3 and GALAH DR1 catalogues.
We developed a code that estimates distances to stars using measured spectroscopic and photometric quantities. We employ a Bayesian approach to build the probability distribution function over stellar evolutionary models given these data, delivering
For studies of Galactic evolution, the accurate characterization of stars in terms of their evolutionary stage and population membership is of fundamental importance. A standard approach relies on extracting this information from stellar evolution mo
We combine high-resolution spectroscopic data from APOGEE-2 Survey Data Release 16 (DR16) with broad-band photometric data from several sources, as well as parallaxes from {it Gaia} Data Release 2 (DR2). Using the Bayesian isochrone-fitting code {tt
We present a method for obtaining the likelihood function of distance and extinction to a star given its photometry. The other properties of the star (its mass, age, metallicity and so on) are marginalised assuming a simple Galaxy model. We demonstra
In determining the distances to stars within the Milky Way galaxy, one often uses photometric or spectroscopic parallax. In these methods, the type of each individual star is determined, and the absolute magnitude of that star type is compared with t