ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Workflow for Unsupervised Multiphase Image Segmentation

453   0   0.0 ( 0 )
 نشر من قبل Matthew Parno
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative image analysis often depends on accurate classification of pixels through a segmentation process. However, imaging artifacts such as the partial volume effect and sensor noise complicate the classification process. These effects increase the pixel intensity variance of each constituent class, causing intensities from one class to overlap with another. This increased variance makes threshold based segmentation methods insufficient due to ambiguous overlap regions in the pixel intensity distributions. The class ambiguity becomes even more complex for systems with more than two constituents, such as unsaturated moist granular media. In this paper, we propose an image processing workflow that improves segmentation accuracy for multiphase systems. First, the ambiguous transition regions between classes are identified and removed, which allows for global thresholding of single-class regions. Then the transition regions are classified using a distance function, and finally both segmentations are combined into one classified image. This workflow includes three methodologies for identifying transition pixels and we demonstrate on a variety of synthetic images that these approaches are able to accurately separate the ambiguous transition pixels from the single-class regions. For situations with typical amounts of image noise, misclassification errors and area differences calculated between each class of the synthetic images and the resultant segmented images range from 0.69-1.48% and 0.01-0.74%, respectively, showing the segmentation accuracy of this approach. We demonstrate that we are able to accurately segment x-ray microtomography images of moist granular media using these computationally efficient methodologies.



قيم البحث

اقرأ أيضاً

Image segmentation, one of the most critical vision tasks, has been studied for many years. Most of the early algorithms are unsupervised methods, which use hand-crafted features to divide the image into many regions. Recently, owing to the great suc cess of deep learning technology, CNNs based methods show superior performance in image segmentation. However, these methods rely on a large number of human annotations, which are expensive to collect. In this paper, we propose a deep unsupervised method for image segmentation, which contains the following two stages. First, a Superpixelwise Autoencoder (SuperAE) is designed to learn the deep embedding and reconstruct a smoothed image, then the smoothed image is passed to generate superpixels. Second, we present a novel clustering algorithm called Deep Superpixel Cut (DSC), which measures the deep similarity between superpixels and formulates image segmentation as a soft partitioning problem. Via backpropagation, DSC adaptively partitions the superpixels into perceptual regions. Experimental results on the BSDS500 dataset demonstrate the effectiveness of the proposed method.
We present a novel clustering objective that learns a neural network classifier from scratch, given only unlabelled data samples. The model discovers clusters that accurately match semantic classes, achieving state-of-the-art results in eight unsuper vised clustering benchmarks spanning image classification and segmentation. These include STL10, an unsupervised variant of ImageNet, and CIFAR10, where we significantly beat the accuracy of our closest competitors by 6.6 and 9.5 absolute percentage points respectively. The method is not specialised to computer vision and operates on any paired dataset samples; in our experiments we use random transforms to obtain a pair from each image. The trained network directly outputs semantic labels, rather than high dimensional representations that need external processing to be usable for semantic clustering. The objective is simply to maximise mutual information between the class assignments of each pair. It is easy to implement and rigorously grounded in information theory, meaning we effortlessly avoid degenerate solutions that other clustering methods are susceptible to. In addition to the fully unsupervised mode, we also test two semi-supervised settings. The first achieves 88.8% accuracy on STL10 classification, setting a new global state-of-the-art over all existing methods (whether supervised, semi-supervised or unsupervised). The second shows robustness to 90% reductions in label coverage, of relevance to applications that wish to make use of small amounts of labels. github.com/xu-ji/IIC
97 - Xide Xia , Brian Kulis 2017
While significant attention has been recently focused on designing supervised deep semantic segmentation algorithms for vision tasks, there are many domains in which sufficient supervised pixel-level labels are difficult to obtain. In this paper, we revisit the problem of purely unsupervised image segmentation and propose a novel deep architecture for this problem. We borrow recent ideas from supervised semantic segmentation methods, in particular by concatenating two fully convolutional networks together into an autoencoder--one for encoding and one for decoding. The encoding layer produces a k-way pixelwise prediction, and both the reconstruction error of the autoencoder as well as the normalized cut produced by the encoder are jointly minimized during training. When combined with suitable postprocessing involving conditional random field smoothing and hierarchical segmentation, our resulting algorithm achieves impressive results on the benchmark Berkeley Segmentation Data Set, outperforming a number of competing methods.
Unsupervised evaluation of segmentation quality is a crucial step in image segmentation applications. Previous unsupervised evaluation methods usually lacked the adaptability to multi-scale segmentation. A scale-constrained evaluation method that eva luates segmentation quality according to the specified target scale is proposed in this paper. First, regional saliency and merging cost are employed to describe intra-region homogeneity and inter-region heterogeneity, respectively. Subsequently, both of them are standardized into equivalent spectral distances of a predefined region. Finally, by analyzing the relationship between image characteristics and segmentation quality, we establish the evaluation model. Experimental results show that the proposed method outperforms four commonly used unsupervised methods in multi-scale evaluation tasks.
With the increase in available large clinical and experimental datasets, there has been substantial amount of work being done on addressing the challenges in the area of biomedical image analysis. Image segmentation, which is crucial for any quantita tive analysis, has especially attracted attention. Recent hardware advancement has led to the success of deep learning approaches. However, although deep learning models are being trained on large datasets, existing methods do not use the information from different learning epochs effectively. In this work, we leverage the information of each training epoch to prune the prediction maps of the subsequent epochs. We propose a novel architecture called feedback attention network (FANet) that unifies the previous epoch mask with the feature map of the current training epoch. The previous epoch mask is then used to provide a hard attention to the learnt feature maps at different convolutional layers. The network also allows to rectify the predictions in an iterative fashion during the test time. We show that our proposed feedback attention model provides a substantial improvement on most segmentation metrics tested on seven publicly available biomedical imaging datasets demonstrating the effectiveness of the proposed FANet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا