ﻻ يوجد ملخص باللغة العربية
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, $N_c$, and their radius of gyration, $R_G$. We show that $N_cpropto R_G^{d_f}$, providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, $d_f$, that is observed to increase with packing fraction $phi$. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., $phitophi_c$. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor $S_4(q,t)$ and the dynamical susceptibility $chi_4(t)$. $S_4(q,t)$ is shown to obey scaling in the full range of packing fractions, $0.6leqphileq 0.805$, and to become increasingly long-ranged as $phitophi_c$. Finite size scaling of $chi_4(t)$ provides a consistency check for the previously analyzed divergences of $chi_4(t)propto (phi-phi_c)^{-gamma_{chi}}$ and the correlation length $xipropto (phi-phi_c)^{-gamma_{xi}}$. We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for $phitophi_c$ suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution.
We study numerically spatio-temporal fluctuations during the out-of-equilibrium relaxation of the three-dimensional Edwards-Anderson model. We focus on two issues. (1) The evolution of a growing dynamical length scale in the glassy phase of the model
We present an extensive numerical study of dynamical heterogeneities and their influence on diffusion in an athermal mesoscopic model for actively deformed amorphous solids. At low strain rates the stress dynamics are governed by cooperative regions
The question of whether DNA conducts electric charges is intriguing to physicists and biologists alike. The suggestion that electron transfer/transport in DNA might be biologically important has triggered a series of experimental and theoretical inve
We present numerical simulations of a model of cellulose consisting of long stiff rods, representing cellulose microfibrils, connected by stretchable crosslinks, representing xyloglucan molecules, hydrogen bonded to the microfibrils. Within a broad r
In this topical review we discuss the nature of the low-temperature phase in both infinite-ranged and short-ranged spin glasses. We analyze the meaning of pure states in spin glasses, and distinguish between physical, or ``observable, states and (pro