ﻻ يوجد ملخص باللغة العربية
We develop a theoretical and computational approach to deal with systems that involve a disparate range of spatio-temporal scales, such as those comprised of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multi-component Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multi-component description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. In the end, we discuss the advantages and complexities of the approach.
Electroconvective flow between two infinitely long parallel electrodes is investigated via a multiphysics computational model. The model solves for spatiotemporal flow properties using two-relaxation-time Lattice Boltzmann Method for fluid and charge
Using Langevin dynamics simulations, we investigate the influence of polymer-pore interactions on the dynamics of biopolymer translocation through nanopores. We find that an attractive interaction can significantly change the translocation dynamics.
Using Langevin dynamics simulations, we investigate the dynamics of a flexible polymer translocation into a confined area under a driving force through a nanopore. We choose an ellipsoidal shape for the confinement and consider the dependence of the
We analyse the dynamics of polymer translocation in the strong force regime by recasting the problem into solving a differential equation with a moving absorbing boundary. For the total translocation time, $tau_{rm tr}$, our simple mean-field model p
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force $F$. We observe that the translocation probability initially increases and then saturates