ﻻ يوجد ملخص باللغة العربية
We show that quasi-one-dimensional (1D) quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall (QAH) state, MTI$/$superconductor quantum wires have especially broad stability regions for both topological and non-topological states, facilitating creation and manipulation of Majorana particles on the MTI surface.
Superconductivity and the quantum Hall effect are considered to be two cornerstones of condensed matter physics. The realization of hybrid structures where these two effects coexist has recently become an active field of research. In this work, we st
In this work, we demonstrate that making a cut (a narrow vacuum regime) in the bulk of a quantum anomalous Hall insulator (QAHI) creates a topologically protected single helical channel with counter-propagating electron modes, and inducing supercondu
We study a realization of a 1d chain of Majorana bound states at the interfaces between alternating ferromagnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well separated Majoranas, the system can be mapped to
A quantum anomalous Hall (QAH) insulator coupled to an s-wave superconductor is predicted to harbor a topological superconducting phase, the elementary excitations of which (i.e. Majorana fermions) can form topological qubits upon non-Abelian braidin
The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically-doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and contr