ﻻ يوجد ملخص باللغة العربية
We consider a Bose-Einstein Condensate(BEC) with non-local inter-particle interactions. The local Gross-Pitaevskii(GP) equation is valid for the gas parameter $ u =: a^{3} n_{0} << 1$, but for $ u rightarrow 1$, the BEC is described by modified GP equation(MGPE). We study the exact solutions of the MGPE describing bright and dark solitons. It turns out that the width of these non-local solitons has qualitatively similar behaviour as the modified healing length due to the non-local interactions of the MGPE. We also study the effect of the non-locality and gas parameter({ u}) on the stability of the solitons using the Vakhitov Kolokolov(VK) stability criterion. We show that these soliton solutions are indeed stable. Further, the stability of these soliton solutions gets enhanced due to the non-locality of interactions.
When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This
Synthetic spin-tensor-momentum coupling has recently been proposed to realize in atomic Bose-Einstein condensates. Here we study bright solitons in Bose-Einstein condensates with spin-tensor-momentum coupling and spin-orbit coupling. The properties a
In a shaken Bose-Einstein condensate, confined in a vibrating trap, there can appear different nonlinear coherent modes. Here we concentrate on two types of such coherent modes, vortex ring solitons and vortex rings. In a cylindrical trap, vortex rin
We have studied the decay of a Bose-Einstein condensate of metastable helium atoms in an optical dipole trap. In the regime where two- and three-body losses can be neglected we show that the Bose-Einstein condensate and the thermal cloud show fundame
We study the dynamics of an impurity embedded in a trapped Bose-Einstein condensate (Bose polaron), by recalling the quantum Brownian motion model. It is crucial that the model considers a parabolic trapping potential to resemble the experimental con