ﻻ يوجد ملخص باللغة العربية
We present Direct Numerical Simulations of the transport of heat and heavy elements across a double-diffusive interface or a double-diffusive staircase, in conditions that are close to those one may expect to find near the boundary between the heavy-element rich core and the hydrogen-helium envelope of giant planets such as Jupiter. We find that the non-dimensional ratio of the buoyancy flux associated with heavy element transport to the buoyancy flux associated with heat transport lies roughly between 0.5 and 1, which is much larger than previous estimates derived by analogy with geophysical double-diffusive convection. Using these results in combination with a core-erosion model proposed by Guillot et al. (2004), we find that the entire core of Jupiter would be eroded within less than 1Myr assuming that the core-envelope boundary is composed of a single interface. We also propose an alternative model that is more appropriate in the presence of a well-established double-diffusive staircase, and find that in this limit a large fraction of the core could be preserved. These findings are interesting in the context of Junos recent results, but call for further modeling efforts to better understand the process of core erosion from first principles.
Context. Atmospheric superrotating flows at the equator are an almost ubiquitous result of simulations of hot Jupiters, and a theory explaining how this zonally coherent flow reaches an equilibrium has been developed in the literature. However, this
Hydrogen and helium demix when sufficiently cool, and this bears on the evolution of all giant planets at large separations at or below roughly a Jupiter mass. We model the thermal evolution of Jupiter, including its evolving helium distribution foll
Damping of the previously discovered resonant drag instability (RDI) of dust streaming in protoplanetary disc is studied using the local approach to dynamics of gas-dust perturbations in the limit of the small dust fraction. Turbulence in a disc is r
Internal gravity waves are excited at the interface of convection and radiation zones of a solar-type star by the tidal forcing of a short-period planet. The fate of these waves as they approach the centre of the star depends on their amplitude. We d
The discovery of numerous debris disks around white dwarfs (WDs), gave rise to extensive study of such disks and their role in polluting WDs, but the formation and evolution of these disks is not yet well understood. Here we study the role of aeolian