Coherence of quantum channels


الملخص بالإنكليزية

We investigate the coherence of quantum channels using the Choi-Jamiol{}kowski isomorphism. The relation between the coherence and the purity of the channel respects a duality relation. It characterizes the allowed values of coherence when the channel has certain purity. This duality has been depicted via the Coherence-Purity (Co-Pu) diagrams. In particular, we study the quantum coherence of the unital and non-unital qubit channels and find out the allowed region of coherence for a fixed purity. We also study coherence of different incoherent channels, namely, incoherent operation (IO), strictly incoherent operation (SIO), physical incoherent operation (PIO) etc. Interestingly, we find that the allowed region for different incoherent operations maintain the relation $PIOsubset SIO subset IO$. In fact, we find that if PIOs are coherence preserving operations (CPO), its coherence is zero otherwise it has unit coherence and unit purity. Interestingly, different kinds of qubit channels can be distinguished using the Co-Pu diagram. The unital channels generally do not create coherence whereas some nonunital can. All coherence breaking channels are shown to have zero coherence, whereas, this is not usually true for entanglement breaking channels. It turns out that the coherence preserving qubit channels have unit coherence. Although the coherence of the Choi matrix of the incoherent channels might have finite values, its subsystem contains no coherence. This indicates that the incoherent channels can either be unital or nonunital under some conditions.

تحميل البحث