ﻻ يوجد ملخص باللغة العربية
Meirowitz [17] showed existence of continuous behavioural function equilibria for Bayesian games with non-finite type and action spaces. A key condition for the proof of the existence result is equi-continuity of behavioural functions which, according to Meirowitz [17, page 215], is likely to fail or difficult to verify. In this paper, we advance the research by presenting some verifiable conditions for the required equi-continuity, namely some growth conditions of the expected utility functions of each player at equilibria. In the case when the growth is of second order, we demonstrate that the condition is guaranteed by strong concavity of the utility function. Moreover, by using recent research on polynomial decision rules and optimal discretization approaches in stochastic and robust optimization, we propose some approximation schemes for the Bayesian equilibrium problem: first, by restricting the behavioral functions to polynomial functions of certain order over the space of types, we demonstrate that solving a Bayesian polynomial behavioural function equilibrium is down to solving a finite dimensional stochastic equilibrium problem; second, we apply the optimal quantization method due to Pflug and Pichler [18] to develop an effective discretization scheme for solving the latter. Error bounds are derived for the respective approximation schemes under moderate conditions and both aca- demic examples and numerical results are presented to explain the Bayesian equilibrium problem and their approximation schemes.
Motivated by the success of reinforcement learning (RL) for discrete-time tasks such as AlphaGo and Atari games, there has been a recent surge of interest in using RL for continuous-time control of physical systems (cf. many challenging tasks in Open
We study quitting games and define the concept of absorption paths, which is an alternative definition to strategy profiles that accomodates both discrete time aspects and continuous time aspects, and is parameterized by the total probability of abso
We prove that every repeated game with countably many players, finite action sets, and tail-measurable payoffs admits an $epsilon$-equilibrium, for every $epsilon > 0$.
We study a class of deterministic finite-horizon two-player nonzero-sum differential games where players are endowed with different kinds of controls. We assume that Player 1 uses piecewise-continuous controls, while Player 2 uses impulse controls. F
We study a wide class of non-convex non-concave min-max games that generalizes over standard bilinear zero-sum games. In this class, players control the inputs of a smooth function whose output is being applied to a bilinear zero-sum game. This class