ﻻ يوجد ملخص باللغة العربية
We introduce the notion of Haantjes algebra: It consists of an assignment of a family of operator fields on a differentiable manifold, each of them with vanishing Haantjes torsion. They are also required to satisfy suitable compatibility conditions. Haantjes algebras naturally generalize several known interesting geometric structures, arising in Riemannian geometry and in the theory of integrable systems. At the same time, as we will show, they play a crucial role in the theory of diagonalization of operators on differentiable manifolds. Assuming that the operators of a Haantjes algebra are semisimple and commute, we shall prove that there exists a set of local coordinates where all operators can be diagonalized simultaneously. Moreover, in the general, non-semisimple case, they acquire simultaneously, in a suitable local chart, a block-diagonal form.
We introduce the notions of relational groupoids and relational convolution algebras. We provide various examples arising from the group algebra of a group $G$ and a given normal subgroup $H$. We also give conditions for the existence of a Haar syste
Let $H$ be the quaternion algebra. Let $g$ be a complex Lie algebra and let $U(g)$ be the enveloping algebra of $g$. We define a Lie algebra structure on the tensor product space of $H$ and $U(g)$, and obtain the quaternification $g^H$ of $g$. Let $S
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a
A way to construct and classify the three dimensional polynomially deformed algebras is given and the irreducible representations is presented. for the quadratic algebras 4 different algebras are obtained and for cubic algebras 12 different classes a
The framework of dynamical C*-algebras for scalar fields in Minkowski space, based on local scattering operators, is extended to theories with locally perturbed kinetic terms. These terms encode information about the underlying spacetime metric, so t