ﻻ يوجد ملخص باللغة العربية
We investigated stellar winds from zero/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfven waves from stars with mass $M_{star}=(0.6-0.8)M_{odot}$ and metallicity $Z=(0-1)Z_{odot}$, where $M_{odot}$ and $Z_{odot}$ are the solar mass and metallicity, respectively. Alfvenic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower $Z$, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Pop.II/III stars with $Zle 0.01Z_{odot}$ is 1-2 orders of magnitude larger than that of the solar-metallicity star with the same mass, and as a result, the mass loss rate, $dot{M}$, is $(4.5-20)$ times larger. This indicates that metal accretion on low-mass Pop.III stars is negligible. The soft X-ray flux of the Pop.II/III stars is also expected to be $approx (1-30)$ times larger than that of the solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvenic wave energy is transmitted to the corona in low $Z$ stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of $dot{M}$ as $dot{M}propto L R_{star}^{11/9}M_{star}^{-10/9}T_{rm eff}^{11/2}left[max (Z/Z_{odot},0.01)right]^{-1/5}$, where $L$, $R_{star}$, and $T_{rm eff}$ are stellar luminosity, radius, and effective temperature, respectively.
Recent theoretical studies suggest the existence of low-mass zero-metal stars in the current universe. In order to study the basic properties of the atmosphere of low-mass first stars, we performed one dimensional magnetohydrodynamical simulations fo
We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and
We discuss the cosmological significance of the transition from the Pop III to Pop II mode of star formation in the early universe, and when and how it may occur in primordial galaxies. Observations that could detect this transition include those of
Fragmentation often occurs in disk-like structures, both in the early Universe and in the context of present-day star formation. Supermassive black holes (SMBHs) are astrophysical objects whose origin is not well understood; they weigh millions of so
We use a suite of SPH simulations to investigate the susceptibility of protoplanetary discs to the effects of self-gravity as a function of star-disc properties. We also include passive irradiation from the host star using different models for the st