ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural origin of the midgap electronic states and the Urbach tail in pnictogen-chalcogenide glasses

109   0   0.0 ( 0 )
 نشر من قبل Vassiliy Lubchenko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the electronic density of states for computationally-generated bulk samples of amorphous chalcogenide alloys As$_{x}$Se$_{100-x}$. The samples were generated using a structure-building algorithm reported recently by us ({J. Chem. Phys.} ${bf 147}$, 114505). Several key features of the calculated density of states are in good agreement with experiment: The trend of the mobility gap with arsenic content is reproduced. The sample-to-sample variation in the energies of states near the mobility gap is quantitatively consistent with the width of the Urbach tail in the optical edge observed in experiment. Most importantly, our samples consistently exhibit very deep-lying midgap electronic states that are delocalized significantly more than what would be expected for a deep impurity or defect state; the delocalization is highly anisotropic. These properties are consistent with those of the topological midgap electronic states that have been proposed by Zhugayevych and Lubchenko as an explanation for several puzzling opto-electronic anomalies observed in the chalcogenides, including light-induced midgap absorption and ESR signal, and anomalous photoluminescence. In a complement to the traditional view of the Urbach states as a generic consequence of disorder in atomic positions, the present results suggest these states can be also thought of as intimate pairs of topological midgap states that cannot recombine because of disorder. Finally, samples with an odd number of electrons exhibit neutral, spin $1/2$ midgap states as well as polaron-like configurations that consist of a charge carrier bound to an intimate pair of midgap states; the polarons identity---electron or hole---depends on the preparation protocol of the sample.



قيم البحث

اقرأ أيضاً

We quantify the degree of disorder in the {pi}-{pi} stacking direction of crystallites of a high performing semicrystalline semiconducting polymer with advanced X-ray lineshape analysis. Using first principles calculations, we obtain the density of s tates of a system of {pi}-{pi} stacked polymer chains with increasing amounts of paracrystalline disorder. We find that for an aligned film of PBTTT the paracrystalline disorder is 7.3%. This type of disorder induces a tail of trap states with a breadth of ~100 meV as determined through calculation. This finding agrees with previous device modeling and provides physical justification for the mobility edge model.
The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied by a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite defects, reveal a hybridization with graphene p$_{rm z}$ states, leading to midgap state formation. The induced midgap states modify the transport properties of graphene and can be reproduced by means of a simple effective tight-binding model. In contrast to carbon defects, it is found that oxygen defects do not strongly hybridize with graphenes low-energy states. Instead, oxygen drastically modifies the band gap of graphene, which emerges in a commensurate stacking on h-BN lattices.
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte material with a low-conductivity tetragonal and a high-conductivity cubic phase. Using density-functional theory and variable cell shape molecular dynamics simulations, we show that the tetragona l phase stability is dependent on a simultaneous ordering of the Li ions on the Li sublattice and a volume-preserving tetragonal distortion that relieves internal structural strain. Supervalent doping introduces vacancies into the Li sublattice, increasing the overall entropy and reducing the free energy gain from ordering, eventually stabilizing the cubic phase. We show that the critical temperature for cubic phase stability is lowered as Li vacancy concentration (dopant level) is raised and that an activated hop of Li ions from one crystallographic site to another always accompanies the transition. By identifying the relevant mechanism and critical concentrations for achieving the high conductivity phase, this work shows how targeted synthesis could be used to improve electrolytic performance.
We systematically explore chemical functionalization of monolayer black phosphorene via chemisorption of oxygen and fluorine atoms. Using the cluster expansion technique, with vary- ing concentration of the adsorbate, we determine the ground states c onsidering both single- as well as double- side chemisorption, which have novel chemical and electronic properties. The nature of the bandgap depends on the concentration of the adsorbate: for fluorination the direct bandgap first decreases, and then increases while becoming indirect, with increasing fluorination, while for oxidation the bandgap first increases and then decreases, while mostly maintaining its direct nature. Further we find that the unique anisotropic free-carrier effective mass for both the electrons and holes, can be changed and even rotated by 90 degrees, with controlled chemisorption, which can be useful for exploring unusual quantum Hall effect, and novel electronic devices based on phosphorene.
Experimental and theoretical studies of spectral properties of chalcogenide Ge-S and As-Ge-S glasses and fibers are performed. A broad infrared (IR) luminescence band which covers the 1.2-2.3~$mu$m range with a lifetime about 6~$mu$s is discovered. S imilar luminescence is also present in optical fibers drawn from these glasses. Arsenic addition to Ge-S glass significantly enhances both its resistance to crystallization and the intensity of the luminescence. Computer modeling of Bi-related centers shows that interstitial Bi$^+$ ions adjacent to negatively charged S vacancies are most likely responsible for the IR luminescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا