ﻻ يوجد ملخص باللغة العربية
We determine the electronic density of states for computationally-generated bulk samples of amorphous chalcogenide alloys As$_{x}$Se$_{100-x}$. The samples were generated using a structure-building algorithm reported recently by us ({J. Chem. Phys.} ${bf 147}$, 114505). Several key features of the calculated density of states are in good agreement with experiment: The trend of the mobility gap with arsenic content is reproduced. The sample-to-sample variation in the energies of states near the mobility gap is quantitatively consistent with the width of the Urbach tail in the optical edge observed in experiment. Most importantly, our samples consistently exhibit very deep-lying midgap electronic states that are delocalized significantly more than what would be expected for a deep impurity or defect state; the delocalization is highly anisotropic. These properties are consistent with those of the topological midgap electronic states that have been proposed by Zhugayevych and Lubchenko as an explanation for several puzzling opto-electronic anomalies observed in the chalcogenides, including light-induced midgap absorption and ESR signal, and anomalous photoluminescence. In a complement to the traditional view of the Urbach states as a generic consequence of disorder in atomic positions, the present results suggest these states can be also thought of as intimate pairs of topological midgap states that cannot recombine because of disorder. Finally, samples with an odd number of electrons exhibit neutral, spin $1/2$ midgap states as well as polaron-like configurations that consist of a charge carrier bound to an intimate pair of midgap states; the polarons identity---electron or hole---depends on the preparation protocol of the sample.
We quantify the degree of disorder in the {pi}-{pi} stacking direction of crystallites of a high performing semicrystalline semiconducting polymer with advanced X-ray lineshape analysis. Using first principles calculations, we obtain the density of s
The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied by a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte material with a low-conductivity tetragonal and a high-conductivity cubic phase. Using density-functional theory and variable cell shape molecular dynamics simulations, we show that the tetragona
We systematically explore chemical functionalization of monolayer black phosphorene via chemisorption of oxygen and fluorine atoms. Using the cluster expansion technique, with vary- ing concentration of the adsorbate, we determine the ground states c
Experimental and theoretical studies of spectral properties of chalcogenide Ge-S and As-Ge-S glasses and fibers are performed. A broad infrared (IR) luminescence band which covers the 1.2-2.3~$mu$m range with a lifetime about 6~$mu$s is discovered. S