ﻻ يوجد ملخص باللغة العربية
We consider the problem of maximizing the harvested power in Multiple Input Multiple Output (MIMO) Simultaneous Wireless Information and Power Transfer (SWIPT) systems with power splitting reception. Different from recently proposed designs, we target with our novel problem formulation at the jointly optimal transmit precoding and receive uniform power splitting (UPS) ratio maximizing the harvested power, while ensuring that the Quality-of-Service (QoS) requirement of the MIMO link is satisfied. We assume generic practical Radio Frequency (RF) Energy Harvesting (EH) receive operation that results in a non-convex optimization problem for the design parameters, which we then solve optimally after formulating it in an equivalent generalized convex form. Our representative results including comparisons of achievable EH gains with benchmark schemes provide key insights on various system parameters.
In this paper, we study a multi-user multiple-input-multiple-output secrecy simultaneous wireless information and power transfer (SWIPT) channel which consists of one transmitter, one cooperative jammer (CJ), multiple energy receivers (potential eave
In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) in a point-to-point system, adopting practical $M$-ary modulation. We take into account the fact that the receivers radio-frequency (RF) ene
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix
This paper considers two base stations (BSs) powered by renewable energy serving two users cooperatively. With different BS energy arrival rates, a fractional joint transmission (JT) strategy is proposed, which divides each transmission frame into tw
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix