ترغب بنشر مسار تعليمي؟ اضغط هنا

The classification of some polynomial maps with nilpotent Jacobians

169   0   0.0 ( 0 )
 نشر من قبل Dan Yan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the paper, we first classify all polynomial maps $H$ of the following form: $H=big(H_1(x_1,x_2,ldots,x_n),H_2(x_1,x_2),H_3(x_1,x_2),ldots,H_n(x_1,x_2)big)$ with $JH$ nilpotent. After that, we generalize the structure of $H$ to $H=big(H_1(x_1,x_2,ldots,x_n),H_2(x_1,x_2),H_3(x_1,x_2,H_1),ldots,H_n(x_1,x_2,H_1)big)$.



قيم البحث

اقرأ أيضاً

Let $K$ be any field with $textup{char}K eq 2,3$. We classify all cubic homogeneous polynomial maps $H$ over $K$ with $textup{rk} JHleq 2$. In particular, we show that, for such an $H$, if $F=x+H$ is a Keller map then $F$ is invertible, and furthermore $F$ is tame if the dimension $n eq 4$.
186 - Yuri G. Zarhin 2021
In this paper we study principally polarized abelian varieties that admit an automorphism of prime order $p>2$. It turns out that certain natural conditions on the multiplicities of its action on the differentials of the first kind do guarantee that those polarized varieties are not jacobians of curves.
We classify all quadratic homogeneous polynomial maps $H$ and Keller maps of the form $x + H$, for which $rk J H = 3$, over a field $K$ of arbitrary characteristic. In particular, we show that such a Keller map (up to a square part if $char K=2$) is a tame automorphism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا