ﻻ يوجد ملخص باللغة العربية
Conversion of electric current into heat involves microscopic processes that operate on nanometer length-scales and release minute amounts of power. While central to our understanding of the electrical properties of materials, individual mediators of energy dissipation have so far eluded direct observation. Using scanning nano-thermometry with sub-micro K sensitivity we visualize and control phonon emission from individual atomic defects in graphene. The inferred electron-phonon cooling power spectrum exhibits sharp peaks when the Fermi level comes into resonance with electronic quasi-bound states at such defects, a hitherto uncharted process. Rare in the bulk but abundant at graphenes edges, switchable atomic-scale phonon emitters define the dominant dissipation mechanism. Our work offers new insights for addressing key materials challenges in modern electronics and engineering dissipation at the nanoscale.
Optical quantum emitters are a key component of quantum devices for metrology and information processing. In particular, atomic defects in 2D materials can operate as optical quantum emitters that overcome current limitations of conventional bulk emi
Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations. Dissipationless topologically protected states are thus of major fundamental interest as well as of practical importance in m
We image the micro-electroluminescence (EL) spectra of self-assembled InAs quantum dots (QDs) embedded in the intrinsic region of a GaAs p-i-n diode and demonstrate optical detection of resonant carrier injection into a single QD. Resonant tunneling
Graphene is a model system for the study of electrons confined to a strictly two-dimensional layer1 and a large number of electronic phenomena have been demonstrated in graphene, from the fractional2, 3 quantum Hall effect to superconductivity4. Howe
Among the many anticipated applications of graphene, some - such as transistors for Si microelectronics - would greatly benefit from the possibility to deposit graphene directly on a semiconductor grown on a Si wafer. We report that Ge(001) layers on