ﻻ يوجد ملخص باللغة العربية
Some scales of spaces of ultra-differentiable functions are introduced, having good stability properties with respect to infinitely many derivatives and compositions. They are well-suited for solving non-linear functional equations by means of hard implicit function theorems. They comprise Gevrey functions and thus, as a limiting case, analytic functions. Using majorizing series, we manage to characterize them in terms of a real sequence M bounding the growth of derivatives. In this functional setting, we prove two fundamental results of Hamiltonian perturbation theory: the invariant torus theorem, where the invariant torus remains ultra-differentiable under the assumption that its frequency satisfies some arithmetic condition which we call BR M , and which generalizes the Bruno-R{u}ssmann condition ; and Nekhoroshevs theorem, where the stability time depends on the ultra-differentiable class of the pertubation, through the same sequence M. Our proof uses periodic averaging, while a substitute of the analyticity width allows us to bypass analytic smoothing. We also prove converse statements on the destruction of invariant tori and on the existence of diffusing orbits with ultra-differentiable perturbations, by respectively mimicking a construction of Bessi (in the analytic category) and Marco-Sauzin (in the Gevrey non-analytic category). When the perturbation space satisfies some additional condition (we then call it matching), we manage to narrow the gap between stability hypotheses (e.g. the BR M condition) and instability hypotheses, thus circumbscribing the stability threshold. The formulas relating the growth M of derivatives of the perturbation on the one hand, and the arithmetics of robust frequencies or the stability time on the other hand, bring light to the competition between stability properties of nearly integrable systems and the distance to integrability. Due to our method of proof using width of regularity as a regularizing parameter, these formulas are closer to optimal as the the regularity tends to analyticity.
For quasiperiodic Schrodinger operators with one-frequency analytic potentials, from dynamical systems side, it has been proved that the corresponding quasiperiodic Schrodinger cocycle is either rotations reducible or has positive Lyapunov exponent f
This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dim
We study topological groups $G$ for which the universal minimal $G$-system $M(G)$, or the universal irreducible affine $G$-system $IA(G)$ are tame. We call such groups intrinsically tame and convexly intrinsically tame. These notions are generaliz
This is part II of our book on KAM theory. We start by defining functorial analysis and then switch to the particular case of Kolmogorov spaces. We develop functional calculus based on the notion of local operators. This allows to define the exponent
In 1964 J. M. Luttinger introduced a model for the quantum thermal transport. In this paper we study the spectral theory of the Hamiltonian operator associated to the Luttingers model, with a special focus at the one-dimensional case. It is shown tha