ﻻ يوجد ملخص باللغة العربية
Charged defects in 2D materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. Advancement of these technologies requires rational design of ideal defect centers, demanding reliable computation methods for quantitatively accurate prediction of defect properties. We present an accurate, parameter-free and efficient procedure to evaluate quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h-BN) for their charge transition levels, stable spin states and optical excitations. We identify $C_BN_V$ (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.
The family of atomically thin magnets holds great promise for a number of prospective applications in magneto-optoelectronics, with CrI$_3$ arguably being its most prototypical member. However, the formation of defects in this system remains unexplor
Identification and design of defects in two-dimensional (2D) materials as promising single photon emitters (SPE) requires a deep understanding of underlying carrier recombination mechanisms. Yet, the dominant mechanism of carrier recombination at def
Two-dimensional (2D) materials are strongly affected by the dielectric environment including substrates, making it an important factor in designing materials for quantum and electronic technologies. Yet, first-principles evaluation of charged defect
Two-dimensional (2D) post-transition metal chalcogenides (PTMC) have attracted attention due to their suitable band gaps and lower exciton binding energies, making them more appropriate for electronic, optical and water-splitting devices than graphen
The discovery of graphene makes it highly desirable to seek new two-dimensional materials. Through first-principles investigation, we predict two-dimensional materials of ReN$_{2}$: honeycomb and tetragonal structures. The phonon spectra establish th