ﻻ يوجد ملخص باللغة العربية
By efficient nanoscale plasma etching, the nitrogen-vacancy (NV) centers in diamond were brought to the sample surface step by step successfully. At each depth, we used the relative ratios of spin coherence times before and after applying external spins on the surface to present the decoherence, and investigated the relationships between depth and ratios. The values of relative ratios declined and then rised with the decreasing depth, which was attributed to the decoherence influenced by external spins, surface spins, discrete surface spin effects and electric field noise. Moreover, our work revealed a characteristic depth at which the NV center would experience relatively the strongest decoherence caused by external spins in consideration of inevitable surface spins. And the characteristic depth was found depending on the adjacent environments of NV centers and the density of surface spins.
Using pulsed photoionization the coherent spin manipulation and echo formation of ensembles of NV- centers in diamond are detected electrically realizing contrasts of up to 17 %. The underlying spin-dependent ionization dynamics are investigated expe
We investigate the magnetic field dependent photo-physics of individual Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions. At distinct magnetic fields, we observe significant reductions in the NV photoluminescence rate, which
We present an enhancement of spin properties of the shallow (<5nm) NV centers by using ALD to deposit titanium oxide layer on the diamond surface. With the oxide layer of an appropriate thickness, increases about 2 up to 3.5 times of both relaxation
Hybrid quantum registers consisting of different types of qubits offer a range of advantages as well as challenges. The main challenge is that some types of qubits react only slowly to external control fields, thus considerably slowing down the infor
We demonstrate electrical detection of the $^{14}$N nuclear spin coherence of NV centers at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of