ترغب بنشر مسار تعليمي؟ اضغط هنا

Depth dependent decoherence caused by surface and external spins for NV centers in diamond

75   0   0.0 ( 0 )
 نشر من قبل Guanzhong Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By efficient nanoscale plasma etching, the nitrogen-vacancy (NV) centers in diamond were brought to the sample surface step by step successfully. At each depth, we used the relative ratios of spin coherence times before and after applying external spins on the surface to present the decoherence, and investigated the relationships between depth and ratios. The values of relative ratios declined and then rised with the decreasing depth, which was attributed to the decoherence influenced by external spins, surface spins, discrete surface spin effects and electric field noise. Moreover, our work revealed a characteristic depth at which the NV center would experience relatively the strongest decoherence caused by external spins in consideration of inevitable surface spins. And the characteristic depth was found depending on the adjacent environments of NV centers and the density of surface spins.



قيم البحث

اقرأ أيضاً

Using pulsed photoionization the coherent spin manipulation and echo formation of ensembles of NV- centers in diamond are detected electrically realizing contrasts of up to 17 %. The underlying spin-dependent ionization dynamics are investigated expe rimentally and compared to Monte-Carlo simulations. This allows the identification of the conditions optimizing contrast and sensitivity which compare favorably with respect to optical detection.
We investigate the magnetic field dependent photo-physics of individual Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions. At distinct magnetic fields, we observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NVs ground state spin. We assign these dips to excited state level anti-crossings, which occur at magnetic fields that strongly depend on the effective, local strain environment of the NV center. Our results offer new insights into the structure of the NVs excited states and a new tool for their effective characterization. Using this tool, we observe strong indications for strain-dependent variations of the NVs orbital g-factor, obtain new insights into NV charge state dynamics, and draw important conclusions regarding the applicability of NV centers for low-temperature quantum sensing.
We present an enhancement of spin properties of the shallow (<5nm) NV centers by using ALD to deposit titanium oxide layer on the diamond surface. With the oxide layer of an appropriate thickness, increases about 2 up to 3.5 times of both relaxation time and evolution time were achieved and the shallow NV center charge states stabilized as well. Moreover, the coherence time kept almost unchanged. This surface coating technique could produce a protective coating layer of controllable thickness without any damages to the solid quantum system surface, making it possible to prolong T1 time and T2* time, which would be a possible approach to the further packaging technique for the applicating solid quantum devices.
Hybrid quantum registers consisting of different types of qubits offer a range of advantages as well as challenges. The main challenge is that some types of qubits react only slowly to external control fields, thus considerably slowing down the infor mation processing operations. One promising approach that has been tested in a number of cases is to use indirect control, where external fields are applied only to qubits that interact strongly with resonant excitation pulses. Here we use this approach to indirectly control the nuclear spins of an NV center, using microwave pulses to drive the electron spin, combined with free precession periods optimized for generating logical gate operations on the nuclear spins. The scheme provides universal control and we present two typical applications: polarizing the nuclear spin and measuring nuclear spin free induction decay signals, both without applying radio-frequency pulses. This scheme is versatile as it can be implemented over a wide range of magnetic field strengths and at any temperature.
We demonstrate electrical detection of the $^{14}$N nuclear spin coherence of NV centers at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of nuclear spin coherence is essential to develop and integrate such quantum devices. In the present study, we used a pulsed electrically detected electron-nuclear double resonance technique to measure the Rabi oscillations and coherence time ($T_2$) of $^{14}$N nuclear spins in NV centers at room temperature. We observed $T_2 approx$ 0.9 ms at room temperature. Our results will pave the way for the development of novel electron- and nuclear-spin-based diamond quantum devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا