ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph rigidity for unitarily invariant matrix norms

275   0   0.0 ( 0 )
 نشر من قبل Rupert Levene
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A rigidity theory is developed for bar-joint frameworks in linear matrix spaces endowed with a unitarily invariant norm. Analogues of Maxwells counting criteria are obtained and minimally rigid matrix frameworks are shown to belong to the matroidal class of (k,l)-sparse graphs for suitable k and l. A characterisation of infinitesimal rigidity is obtained for product norms and it is shown that K_6 - e (respectively, K_7) is the smallest minimally rigid graph for the class of 2 x 2 symmetric (respectively, hermitian) matrices with the trace norm.



قيم البحث

اقرأ أيضاً

Let $mathbf{p}$ be a configuration of $n$ points in $mathbb{R}^d$ for some $n$ and some $d ge 2$. Each pair of points has a Euclidean length in the configuration. Given some graph $G$ on $n$ vertices, we measure the point-pair lengths corresponding t o the edges of $G$. In this paper, we study the question of when a generic $mathbf{p}$ in $d$ dimensions will be uniquely determined (up to an unknowable Euclidean transformation) from a given set of point-pair lengths together with knowledge of $d$ and $n$. In this setting the lengths are given simply as a set of real numbers; they are not labeled with the combinatorial data that describes which point-pair gave rise to which length, nor is data about $G$ given. We show, perhaps surprisingly, that in terms of generic uniqueness, labels have no effect. A generic configuration is determined by an unlabeled set of point-pair lengths (together with $d$ and $n$) iff it is determined by the labeled edge lengths.
This note gives a detailed proof of the following statement. Let $din mathbb{N}$ and $m,n ge d + 1$, with $m + n ge binom{d+2}{2} + 1$. Then the complete bipartite graph $K_{m,n}$ is generically globally rigid in dimension $d$.
We develop a combinatorial rigidity theory for symmetric bar-joint frameworks in a general finite dimensional normed space. In the case of rotational symmetry, matroidal Maxwell-type sparsity counts are identified for a large class of $d$-dimensional normed spaces (including all $ell^p$ spaces with $p ot=2$). Complete combinatorial characterisations are obtained for half-turn rotation in the $ell^1$ and $ell^infty$-plane. As a key tool, a new Henneberg-type inductive construction is developed for the matroidal class of $(2,2,0)$-gain-tight graphs.
176 - Apoorva Khare 2018
We discuss a new pseudometric on the space of all norms on a finite-dimensional vector space (or free module) $mathbb{F}^k$, with $mathbb{F}$ the real, complex, or quaternion numbers. This metric arises from the Lipschitz-equivalence of all norms on $mathbb{F}^k$, and seems to be unexplored in the literature. We initiate the study of the associated quotient metric space, and show that it is complete, connected, and non-compact. In particular, the new topology is strictly coarser than that of the Banach-Mazur compactum. For example, for each $k geqslant 2$ the metric subspace ${ | cdot |_p : p in [1,infty] }$ maps isometrically and monotonically to $[0, log k]$ (or $[0,1]$ by scaling the norm), again unlike in the Banach-Mazur compactum. Our analysis goes through embedding the above quotient space into a normed space, and reveals an implicit functorial construction of function spaces with diameter norms (as well as a variant of the distortion). In particular, we realize the above quotient space of norms as a normed space. We next study the parallel setting of the - also hitherto unexplored - metric space $mathcal{S}([n])$ of all metrics on a finite set of $n$ elements, revealing the connection between log-distortion and diameter norms. In particular, we show that $mathcal{S}([n])$ is also a normed space. We demonstrate embeddings of equivalence classes of finite metric spaces (parallel to the Gromov-Hausdorff setting), as well as of $mathcal{S}([n-1])$, into $mathcal{S}([n])$. We conclude by discussing extensions to norms on an arbitrary Banach space and to discrete metrics on any set, as well as some questions in both settings above.
157 - Bill Jackson , J. C. Owen 2014
A 2-dimensional point-line framework is a collection of points and lines in the plane which are linked by pairwise constraints that fix some angles between pairs of lines and also some point-line and point-point distances. It is rigid if every contin uous motion of the points and lines which preserves the constraints results in a point-line framework which can be obtained from the initial framework by a translation or a rotation. We characterise when a generic point-line framework is rigid. Our characterisation gives rise to a polynomial algorithm for solving this decision problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا