ﻻ يوجد ملخص باللغة العربية
The response to shear of the dense soft solids features a stress overshoot and a persistent shear banding before reaching a homogeneously flowing state. In 3D large scale simulations we analyze the time required for the onset of homogeneous flow, the normal stresses and structural signatures at different shear rates and in different flow geometries, finding that the stress overshoot, the shear band formation and its persistence are controlled by the presence of overconstrained microscopic domains in the initially solid samples. Being able to identify such domains in our model by prevalently icosahedrally packed regions, we show that they allow for stress accumulation during the stress overshoot and that their structural reorganization controls the emergence and the persistence of the shear banding.
The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, inclu
Understanding the mechanical response and failure of solids is of obvious importance in their use as structural materials. The nature of plastic deformation leading to yielding of amorphous solids has been vigorously pursued in recent years. Investig
The relation between elasticity and yielding is investigated in a model polymer solid by Molecular-Dynamics simulations. By changing the bending stiffness of the chain and the bond length, semicrystalline and disordered glassy polymers - both with bo
It is well known that jammed soft materials will flow if sheared above their yield stress - think mayonnaise spread on bread - but a complete microscopic description of this seemingly sim- ple process has yet to emerge. What remains elusive is a micr
The rheology of pressure-driven flows of two-dimensional dense monodisperse emulsions in neutral wetting microchannels is investigated by means of mesoscopic lattice simulations, capable of handling large collections of droplets, in the order of seve