ﻻ يوجد ملخص باللغة العربية
According to the current paradigm of circumstellar disk evolution, gas-rich primordial disks evolve into gas-poor debris disks compose of second-generation dust. To explore the transition between these phases, we searched for $^{12}$CO, $^{13}$CO, and C$^{18}$O emission in seven dust-rich debris disks around young A-type stars, using ALMA in Band 6. We discovered molecular gas in three debris disks. In all these disks, the $^{12}$CO line was optically thick, highlighting the importance of less abundant molecules in reliable mass estimates. Supplementing our target list by literature data, we compiled a volume-limited sample of dust-rich debris disks around young A-type stars within 150 pc. We obtained a CO detection rate of 11/16 above a $^{12}$CO J=2$-$1 line luminosity threshold of $sim 1.4 times 10 ^4$ Jykms$^{-1}$pc$^2$ in the sample. This high incidence implies that the presence of CO gas in bright debris disks around young A-type stars is likely more the rule than the exception. Interestingly, dust-rich debris disks around young FG-type stars exhibit, with the same detectability threshold as for A-type stars, significantly lower gas incidence. While the transition from protoplanetary to debris phase is associated with a drop of dust content, our results exhibit a large spread in the CO mass in our debris sample, with peak values comparable to those in protoplanetary Herbig Ae disks. In the particularly CO-rich debris systems the gas may have primordial origin, characteristic of a hybrid disk.
WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star ac
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we p
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population
Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30m radiotelescopes to search for CO gas in 20 bright debris disks. In one case, around t
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical