ﻻ يوجد ملخص باللغة العربية
In this paper, we discuss and calculate the electroweak parameters $R_l$, $A_l$, and $N_{ u}^l$ in a model that combine inverse seesaw with the scotogenic model. Dark matter relic density is also considered. Due to the stringent constraint from the ATLAS experimental data, it is difficult to detect the loop effect on $R_l$, $A_l$ in this model considering both the theoretical and future experimental uncertainties. However, $N_{ u}^l$ can sometimes become large enough for the future experiments to verify.
Fermionic unparticles are introduced and their basic properties are discussed. Some phenomenologies related are exploited, such as their effects on charged Higgs boson decays and anomalous magnetic moments of leptons. Also, it has been found that mea
The generation of neutrino masses by inverse seesaw mechanisms has advantages over other seesaw models since the potential new physics can be produced at the TeV scale. We propose a model that generates the inverse seesaw mechanism via spontaneous br
We discuss an inverse seesaw model based on right-handed fermion specific $U(1)$ gauge symmetry and $A_4$-modular symmetry. These symmetries forbid unnecessary terms and restrict structures of Yukawa interactions which are relevant to inverse seesaw
We consider the production of a heavy neutrino and its possible signals at the Large Hadron-electron Collider (LHeC) in the context of an inverse-seesaw model for neutrino mass generation. The inverse seesaw model extends the Standard Model (SM) part
We consider an extension of the standard model with three Higgs doublet model and $S_3times mathbb{Z}_2$ discrete symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We have calculated all the mass spectra in the scala