The PADME experiment at the DA$Phi$NE Beam-Test Facility (BTF) is designed to search for the gauge boson of a new $rm U(1)$ interaction in the process e$^+$e$^-rightarrowgamma$+$rm A$, using the intense positron beam hitting a light target. The $rm A$, usually referred as dark photon, is assumed to decay into invisible particles of a secluded sector and it can be observed by searching for an anomalous peak in the spectrum of the missing mass measured in events with a single photon in the final state. The measurement requires the determination of the 4-momentum of the recoil photon, performed by a homogeneous, highly segmented BGO crystals calorimeter. A significant improvement of the missing mass resolution is possible using an active target capable to determine the average position of the positron bunch with a resolution of less than 1 mm. This report presents the performance of a real size $rm (2x2 cm^2)$ PADME active target made of a thin (50 $mu$m) diamond sensor, with graphitic strips produced via laser irradiation on both sides. The measurements are based on data collected in a beam test at the BTF in November 2015.