ﻻ يوجد ملخص باللغة العربية
The PADME experiment at the DA$Phi$NE Beam-Test Facility (BTF) is designed to search for the gauge boson of a new $rm U(1)$ interaction in the process e$^+$e$^-rightarrowgamma$+$rm A$, using the intense positron beam hitting a light target. The $rm A$, usually referred as dark photon, is assumed to decay into invisible particles of a secluded sector and it can be observed by searching for an anomalous peak in the spectrum of the missing mass measured in events with a single photon in the final state. The measurement requires the determination of the 4-momentum of the recoil photon, performed by a homogeneous, highly segmented BGO crystals calorimeter. A significant improvement of the missing mass resolution is possible using an active target capable to determine the average position of the positron bunch with a resolution of less than 1 mm. This report presents the performance of a real size $rm (2x2 cm^2)$ PADME active target made of a thin (50 $mu$m) diamond sensor, with graphitic strips produced via laser irradiation on both sides. The measurements are based on data collected in a beam test at the BTF in November 2015.
The PADME experiment at the DA$Phi$NE Beam-Test Facility (BTF) aims at searching for invisible decays of the dark photon by measuring the final state missing mass in the process $e^+e^- to gamma+ A$, with $A$ undetected. The measurement requires the
The measurement of $BR(K^+topi^+ ubar{ u})$ with 10% precision by the NA62 experiment requires extreme background suppression. The Small Angle Calorimeter aims to provide an efficient veto for photons flying at angles down to zero with respect to the
The PADME experiment will search for the invisible decay of Dark Photons produced in interactions of positron from the DA$Phi$NE Linac on a target. The collaboration aims at reaching a sensitivity of $sim10^{-3}$ on the coupling constant for values of Dark Photon masses up to $23.7,mbox{MeV}$.
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288$,$kg prototype detector was deployed in 2015 and collected data during the operati
Investigation at a $phi$--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) th