ترغب بنشر مسار تعليمي؟ اضغط هنا

The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture

244   0   0.0 ( 0 )
 نشر من قبل Megumi Harada
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We define a subclass of Hessenberg varieties called abelian Hessenberg varieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We give an inductive formula for the $S_n$-representation on the cohomology of an abelian regular semisimple Hessenberg variety with respect to the action defined by Tymoczko. Our result implies that a graded version of the Stanley-Stembridge conjecture holds in the abelian case, and generalizes results obtained by Shareshian-Wachs and Teff. Our proof uses previous work of Stanley, Gasharov, Shareshian-Wachs, and Brosnan-Chow, as well as results of the second author on the geometry and combinatorics of Hessenberg varieties. As part of our arguments, we obtain inductive formulas for the Poincare polynomials of regular abelian Hessenberg varieties.



قيم البحث

اقرأ أيضاً

In 2015, Brosnan and Chow, and independently Guay-Paquet, proved the Shareshian-Wachs conjecture, which links the Stanley-Stembridge conjecture in combinatorics to the geometry of Hessenberg varieties through Tymoczkos permutation group action on the cohomology ring of regular semisimple Hessenberg varieties. In previous work, the authors exploited this connection to prove a refined (graded) version of the Stanley-Stembridge conjecture in a special case. In this manuscript, we derive a new set of linear relations satisfied by the multiplicities of certain permutation representations in Tymoczkos representation. We also show that these relations are upper-triangular in an appropriate sense, and in particular, they uniquely determine the multiplicities. As an application of these results, we prove an inductive formula for the multiplicity coefficients corresponding to partitions with a maximal number of parts. It follows from our formula that these coefficients are non-negative, thus giving additional positive evidence for the graded Stanley--Stembridge conjecture in the general case.
Recent work of Shareshian and Wachs, Brosnan and Chow, and Guay-Paquet connects the well-known Stanley-Stembridge conjecture in combinatorics to the dot action of the symmetric group $S_n$ on the cohomology rings $H^*(Hess(S,h))$ of regular semisimpl e Hessenberg varieties. In particular, in order to prove the Stanley-Stembridge conjecture, it suffices to construct (for any Hessenberg function $h$) a permutation basis of $H^*(Hess(S,h))$ whose elements have stabilizers isomorphic to Young subgroups. In this manuscript we give several results which contribute toward this goal. Specifically, in some special cases, we give a new, purely combinatorial construction of classes in the $T$-equivariant cohomology ring $H^*_T(Hess(S,h))$ which form permutation bases for subrepresentations in $H^*_T(Hess(S,h))$. Moreover, from the definition of our classes it follows that the stabilizers are isomorphic to Young subgroups. Our constructions use a presentation of the $T$-equivariant cohomology rings $H^*_T(Hess(S,h))$ due to Goresky, Kottwitz, and MacPherson. The constructions presented in this manuscript generalize past work of Abe-Horiguchi-Masuda, Chow, and Cho-Hong-Lee.
181 - Aba Mbirika 2009
The Springer variety is the set of flags stabilized by a nilpotent operator. In 1976, T.A. Springer observed that this varietys cohomology ring carries a symmetric group action, and he offered a deep geometric construction of this action. Sixteen yea rs later, Garsia and Procesi made Springers work more transparent and accessible by presenting the cohomology ring as a graded quotient of a polynomial ring. They combinatorially describe an explicit basis for this quotient. The goal of this paper is to generalize their work. Our main result deepens their analysis of Springer varieties and extends it to a family of varieties called Hessenberg varieties, a two-parameter generalization of Springer varieties. Little is known about their cohomology. For the class of regular nilpotent Hessenberg varieties, we conjecture a quotient presentation for the cohomology ring and exhibit an explicit basis. Tantalizing new evidence supports our conjecture for a subclass of regular nilpotent varieties called Peterson varieties.
We investigate the cohomology rings of regular semisimple Hessenberg varieties whose Hessenberg functions are of the form $h=(h(1),ndots,n)$ in Lie type $A_{n-1}$. The main result of this paper gives an explicit presentation of the cohomology rings i n terms of generators and their relations. Our presentation naturally specializes to Borels presentation of the cohomology ring of the flag variety and it is compatible with the representation of the symmetric group $mathfrak{S}_n$ on the cohomology constructed by J. Tymoczko. As a corollary, we also give an explicit presentation of the $mathfrak{S}_n$-invariant subring of the cohomology ring.
318 - Kari Vilonen , Ting Xue 2021
We give a short proof based on Lusztigs generalized Springer correspondence of some results of [BrCh,BaCr,P].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا