ترغب بنشر مسار تعليمي؟ اضغط هنا

Unforgeable Quantum Encryption

117   0   0.0 ( 0 )
 نشر من قبل Christian Majenz
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of encrypting and authenticating quantum data in the presence of adversaries making adaptive chosen plaintext and chosen ciphertext queries. Classically, security games use string copying and comparison to detect adversarial cheating in such scenarios. Quantumly, this approach would violate no-cloning. We develop new techniques to overcome this problem: we use entanglement to detect cheating, and rely on recent results for characterizing quantum encryption schemes. We give definitions for (i.) ciphertext unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext attack, and (iii.) authenticated encryption. The restriction of each definition to the classical setting is at least as strong as the corresponding classical notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All of our new notions also imply QIND-CPA privacy. Combining one-time authentication and classical pseudorandomness, we construct schemes for each of these new quantum security notions, and provide several separation examples. Along the way, we also give a new definition of one-time quantum authentication which, unlike all previous approaches, authenticates ciphertexts rather than plaintexts.



قيم البحث

اقرأ أيضاً

230 - Ashwin Nayak 2006
In this note, we characterize the form of an invertible quantum operation, i.e., a completely positive trace preserving linear transformation (a CPTP map) whose inverse is also a CPTP map. The precise form of such maps becomes important in contexts s uch as self-testing and encryption. We show that these maps correspond to applying a unitary transformation to the state along with an ancilla initialized to a fixed state, which may be mixed. The characterization of invertible quantum operations implies that one-way schemes for encrypting quantum states using a classical key may be slightly more general than the ``private quantum channels studied by Ambainis, Mosca, Tapp and de Wolf (FOCS 2000). Nonetheless, we show that their results, most notably a lower bound of 2n bits of key to encrypt n quantum bits, extend in a straightforward manner to the general case.
Non-malleability is an important security property for public-key encryption (PKE). Its significance is due to the fundamental unachievability of integrity and authenticity guarantees in this setting, rendering it the strongest integrity-like propert y achievable using only PKE, without digital signatures. In this work, we generalize this notion to the setting of quantum public-key encryption. Overcoming the notorious recording barrier known from generalizing other integrity-like security notions to quantum encryption, we generalize one of the equivalent classical definitions, comparison-based non-malleability, and show how it can be fulfilled. In addition, we explore one-time non-malleability notions for symmetric-key encryption from the literature by defining plaintext and ciphertext variants and by characterizing their relation.
70 - Yu Zhang , Li Yu , Qi-Ping Su 2019
Quantum homomorphic encryption (QHE) is an encryption method that allows quantum computation to be performed on one partys private data with the program provided by another party, without revealing much information about the data nor the program to t he opposite party. We propose a framework for (interactive) QHE based on the universal circuit approach. It contains a subprocedure of calculating a classical linear polynomial, which can be implemented with quantum or classical methods; apart from the subprocedure, the framework has low requirement on the quantum capabilities of the party who provides the circuit. We illustrate the subprocedure using a quite simple classical protocol with some privacy tradeoff. For a special case of such protocol, we obtain a scheme similar to blind quantum computation but with the output on a different party. Another way of implementing the subprocedure is to use a recently studied quantum check-based protocol, which has low requirement on the quantum capabilities of both parties. The subprocedure could also be implemented with a classical additive homomorphic encryption scheme. We demonstrate some key steps of the outer part of the framework in a quantum optics experiment.
96 - Nayana Das , Goutam Paul 2020
Recently in 2018, Niu et al. proposed a measurement-device-independent quantum secure direct communication protocol using Einstein-Podolsky-Rosen pairs and generalized it to a quantum dialogue protocol (Niu et al., Science bulletin 63.20, 2018). By a nalyzing these protocols we find some security issues in both these protocols. In this work, we show that both the protocols are not secure against information leakage, and a third party can get half of the secret information without any active attack. We also propose suitable modifications of these protocols to improve the security.
Quantum computers promise not only to outperform classical machines for certain important tasks, but also to preserve privacy of computation. For example, the blind quantum computing protocol enables secure delegated quantum computation, where a clie nt can protect the privacy of their data and algorithms from a quantum server assigned to run the computation. However, this security comes at the expense of interaction: the client and server must communicate after each step of the computation. Homomorphic encryption, on the other hand, avoids this limitation. In this scenario, the server specifies the computation to be performed, and the client provides only the input data, thus enabling secure non-interactive computation. Here we demonstrate a homomorphic-encrypted quantum random walk using single-photon states and non-birefringent integrated optics. The client encrypts their input state in the photons polarization degree of freedom, while the server performs the computation using the path degree of freedom. Our random walk computation can be generalized, suggesting a promising route toward more general homomorphic encryption protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا