ﻻ يوجد ملخص باللغة العربية
We develop causality theory for upper semi-continuous distributions of cones over manifolds generalizing results from mathematical relativity in two directions: non-round cones and non-regular differentiability assumptions. We prove the validity of most results of the regular Lorentzian causality theory including causal ladder, Fermats principle, notable singularity theorems in their causal formulation, Avez-Seifert theorem, characterizations of stable causality and global hyperbolicity by means of (smooth) time functions. For instance, we give the first proof for these structures of the equivalence between stable causality, $K$-causality and existence of a time function. The result implies that closed cone structures that admit continuous increasing functions also admit smooth ones. We also study proper cone structures, the fiber bundle analog of proper cones. For them we obtain most results on domains of dependence. Moreover, we prove that horismos and Cauchy horizons are generated by lightlike geodesics, the latter being defined through the achronality property. Causal geodesics and steep temporal functions are obtained with a powerful product trick. The paper also contains a study of Lorentz-Minkowski spaces under very weak regularity conditions. Finally, we introduce the concepts of stable distance and stable spacetime solving two well known problems (a) the characterization of Lorentzian manifolds embeddable in Minkowski spacetime, they turn out to be the stable spacetimes, (b) the proof that topology, order and distance (with a formula a la Connes) can be represented by the smooth steep temporal functions. The paper is self-contained, in fact we do not use any advanced result from mathematical relativity.
We complement our work on the causality of upper semi-continuous distributions of cones with some results on Cauchy hypersurfaces. We prove that every locally stably acausal Cauchy hypersurface is stable. Then we prove that the signed distance $d_S$
Hawkings singularity theorem concerns matter obeying the strong energy condition (SEC), which means that all observers experience a nonnegative effective energy density (EED), thereby guaranteeing the timelike convergence property. However, there are
We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
Scalar field cosmologies with a generalized harmonic potential and matter with energy density $rho_m$, pressure $p_m$, and barotropic equation of state (EoS) $p_m=(gamma-1)rho_m, ; gammain[0,2]$ in Kantowski-Sachs (KS) and closed Friedmann--Lema^itre
Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shal