We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed effectively as the solution of a system of equations, from which the coefficients can be extracted. As a byproduct, we also enumerate labelled 3-connected 4-regular planar graphs, and simple 4-regular rooted maps.