ﻻ يوجد ملخص باللغة العربية
Mainly for the sake of solving the lack of keyword-specific data, we propose one Keyword Spotting (KWS) system using Deep Neural Network (DNN) and Connectionist Temporal Classifier (CTC) on power-constrained small-footprint mobile devices, taking full advantage of general corpus from continuous speech recognition which is of great amount. DNN is to directly predict the posterior of phoneme units of any personally customized key-phrase, and CTC to produce a confidence score of the given phoneme sequence as responsive decision-making mechanism. The CTC-KWS has competitive performance in comparison with purely DNN based keyword specific KWS, but not increasing any computational complexity.
Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. To solve this problem, this paper proposes a separable
Keyword Spotting (KWS) remains challenging to achieve the trade-off between small footprint and high accuracy. Recently proposed metric learning approaches improved the generalizability of models for the KWS task, and 1D-CNN based KWS models have ach
Deep neural networks provide effective solutions to small-footprint keyword spotting (KWS). However, if training data is limited, it remains challenging to achieve robust and highly accurate KWS in real-world scenarios where unseen sounds that are ou
This paper proposes a neural network architecture for tackling the query-by-example user-defined keyword spotting task. A multi-head attention module is added on top of a multi-layered GRU for effective feature extraction, and a normalized multi-head
We introduce a few-shot transfer learning method for keyword spotting in any language. Leveraging open speech corpora in nine languages, we automate the extraction of a large multilingual keyword bank and use it to train an embedding model. With just