ﻻ يوجد ملخص باللغة العربية
We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35$pm$15% of the observed EGB in the energy interval E_{gamma}=0.1-1 GeV, for ~73$pm$15% at E_{gamma}=1-10 GeV, and for ~60$pm$20% at E_{gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.
Galaxies experiencing intense star-formation episodes are expected to be rich in energetic cosmic rays (CRs). These CRs undergo hadronic interactions with the interstellar gases of their host to drive $gamma$-ray emission, which has already been dete
In recent years, $gamma$-ray emission has been detected from star-forming galaxies (SFGs) in the local universe, including M82, NGC 253, Arp 220 and M33. The bulk of this emission is thought to be of hadronic origin, arising from the interactions of
Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simula
The Fermi Gamma-ray Space Telescope has revealed a diffuse $gamma$-ray background at energies from 0.1 GeV to 1 TeV, which can be separated into Galactic emission and an isotropic, extragalactic component. Previous efforts to understand the latter ha
Star-forming galaxies (SFGs) emit non-thermal radiation from radio to gamma-rays. We aim to investigate the main mechanisms of global CR transport and cooling in SFGs. The way they contribute in shaping the relations between non-thermal luminosities