ترغب بنشر مسار تعليمي؟ اضغط هنا

Lepton number violation phenomenology of d=7 neutrino mass models

140   0   0.0 ( 0 )
 نشر من قبل Ricardo Cepedello
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phenomenology of d=7 1-loop neutrino mass models. All models in this particular class require the existence of several new $SU(2)_L$ multiplets, both scalar and fermionic, and thus predict a rich phenomenology at the LHC. The observed neutrino masses and mixings can easily be fitted in these models. Interestingly, despite the smallness of the observed neutrino masses, some particular lepton number violating (LNV) final states can arise with observable branching ratios. These LNV final states consists of leptons and gauge bosons with high multiplicities, such as 4l+4W, 6l+2W, etc. We study current constraints on these models from upper bounds on charged lepton flavour violating decays, existing lepton number conserving searches at the LHC and discuss possible future LNV searches.



قيم البحث

اقرأ أيضاً

108 - Shinya Kanemura 2017
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result in an unbroken $Z_2$ symmetry that stabilizes the dark matter candidate (the lightest $Z_2$-odd particle). In this model, $Z_2$-odd particles play an important role to generate the mass of neutrinos. The scalar dark matter in our model can satisfy constraints on the dark matter abundance and those from direct searches. It is also shown that the strong first-order phase transition, which is required for the electroweak baryogenesis, can be realized in our model. In addition, the scalar potential can in principle contain CP-violating phases, which can also be utilized for the baryogenesis. Therefore, three problems in the standard model, namely absence of neutrino masses, the dark matter candidate, and the mechanism to generate baryon asymmetry of the Universe, may be simultaneously resolved at the TeV-scale. Phenomenology of this model is also discussed briefly.
233 - Ashok Goyal 2005
We study lepton number violation in Little Higgs model and find that the choice of putting triplet Higgs vev equal to zero so as not to have any tree level neutrino Majorana mass is not natural in the sense that such a term is generated at the one lo op level. We investigate the contribution of exotic lepton number violating terms on neutrinoless double beta decay, K meson decay and on trilepton production in $ u$-N scattering.
141 - Tony Gherghetta 2003
It is shown how pure Dirac neutrino masses can naturally occur at low energies even in the presence of Planck scale lepton number violation. The geometrical picture in five dimensions assumes that the lepton number symmetry is explicitly broken on th e Planck brane while the right-handed neutrino is localised on the TeV brane. This physical separation in the bulk causes the global lepton number to be preserved at low energies. A small wavefunction overlap between the left-handed and right-handed neutrinos then naturally leads to a small Dirac Yukawa coupling. By the AdS/CFT correspondence there exists a purely four-dimensional dual description in which the right-handed neutrino is a composite CFT bound state. The global lepton number is violated at the Planck scale in a fundamental sector whose mixing into the composite sector is highly suppressed by CFT operators with large anomalous dimensions. A similar small mixing is then also responsible for generating a naturally small Dirac Yukawa coupling between the fundamental left-handed neutrino and the composite right-handed neutrino.
330 - K.Matsuda , N.Takeda , T.Fukuyama 2000
We examine the constraints on the MNS lepton mixing matrix from the present and future experimental data of the neutrino oscillation and lepton number violation processes. We introduce a graphical representation of the CP violation phases which appea r in the lepton number violation processes such as neutrinoless double beta decay, the $mu^--e^+$ conversion, and the K decay, $K^-topi^+mu^-mu^-.$ Using this graphical representation, we derive the constraints on the CP violation phases in the lepton sector.
Lepton-number violation (LNV), in general, implies nonzero Majorana masses for the Standard Model neutrinos. Since neutrino masses are very small, for generic candidate models of the physics responsible for LNV, the rates for almost all experimentall y accessible LNV observables -- except for neutrinoless double-beta decay -- are expected to be exceedingly small. Guided by effective-operator considerations of LNV phenomena, we identify a complete family of models where lepton number is violated but the generated Majorana neutrino masses are tiny, even if the new-physics scale is below 1 TeV. We explore the phenomenology of these models, including charged-lepton flavor-violating phenomena and baryon-number-violating phenomena, identifying scenarios where the allowed rates for $mu^-to e^+$-conversion in nuclei are potentially accessible to next-generation experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا