ﻻ يوجد ملخص باللغة العربية
We present a compact current sensor based on a superconducting microwave lumped-element resonator with a nanowire kinetic inductor, operating at 4.2 K. The sensor is suitable for multiplexed readout in GHz range of large-format arrays of cryogenic detectors. The device consists of a lumped-element resonant circuit, fabricated from a single 4-nm-thick superconducting layer of niobium nitride. Thus, the fabrication and operation is significantly simplified in comparison to state-of-the-art approaches. Because the resonant circuit is inductively coupled to the feed line the current to be measured can directly be injected without having the need of an impedance matching circuit, reducing the system complexity. With the proof-of-concept device we measured a current noise floor {delta}Imin of 10 pA/Hz1/2 at 10 kHz. Furthermore, we demonstrate the ability of our sensor to amplify a pulsed response of a superconducting nanowire single-photon detector using a GHz-range carrier for effective frequency-division multiplexing.
Different terrestrial terahertz applications would benefit from large-format arrays, operating in compact and inexpensive cryocoolers at liquid helium temperature with sensitivity, limited by the 300-K background radiation only. A voltage-biased Tran
Low temperature Kinetic Inductance Detectors (KIDs) are attractive candidates for producing quantumsensitive, arrayable sensors for astrophysical and other precision measurement applications. The readout uses a low frequency probe signal with quanta
We demonstrate photon counting at 1550 nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature Tc ~ 1.4 K. The detectors have a lumped-element design with a la
Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency doma
We present a cryogenic wafer mapper based on light emitting diodes (LEDs) for spatial mapping of a large microwave kinetic inductance detector (MKID) array. In this scheme, an array of LEDs, addressed by DC wires and collimated through horns onto the