ﻻ يوجد ملخص باللغة العربية
Higher-order accurate solution to electromagnetic scattering problems are obtained at reduced computational cost in a {it p}-variable finite volume time domain method. Spatial operators of lower, including first-order accuracy, are employed locally in substantial parts of the computational domain during the solution process. The use of computationally cheaper lower order spatial operators does not affect the overall higher-order accuracy of the solution. The order of the spatial operator at a candidate cell during numerical simulation can vary in space and time and is dynamically chosen based on an order of magnitude comparison of scattered and incident fields at the cell center. Numerical results are presented for electromagnetic scattering from perfectly conducting two-dimensional scatterers subject to transverse magnetic and transverse electric illumination.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor
In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotr
A radial-dependent dispersive finite-difference time-domain (FDTD) method is proposed to simulate electromagnetic cloaking devices. The Drude dispersion model is applied to model the electromagnetic characteristics of the cloaking medium. Both lossle
We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $omega$, but is especially efficient for high-frequency problems. It is
The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. Thi