ﻻ يوجد ملخص باللغة العربية
We study the dependence of the normalized moments of the net-proton multiplicity distributions on the definition of centrality in relativistic nuclear collisions at a beam energy of $sqrt{s_{mathrm{NN}}}= 7.7$ GeV. Using the UrQMD model as event generator we find that the centrality definition has a large effect on the extracted cumulant ratios. Furthermore we find that the finite efficiency for the determination of the centrality introduces an additional systematic uncertainty. Finally, we quantitatively investigate the effects of event-pile up and other possible spurious effects which may change the measured proton number. We find that pile-up alone is not sufficient to describe the data and show that a random double counting of events, adding significantly to the measured proton number, affects mainly the higher order cumulants in most central collisions.
We study the influence of the centrality definition and detector efficiency on the net-proton kurtosis for minimum bias Au+Au collisions at a beam energy of $sqrt{s_{mathrm{NN}}}= 7.7$ GeV by using the UrQMD model. We find that different ways of defi
We consider the effect of volume fluctuations on cumulants of the net baryon number. Based on a general formalism, we derive universal expressions for the net baryon number cumulants in the presence of volume fluctuations with an arbitrary probabilit
We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first
We propose a method to remove the contributions of pileup events from higher-order cumulants and moments of event-by-event particle distributions. Assuming that the pileup events are given by the superposition of two independent single-collision even
Event-by-event fluctuations of the net-proton number studied in heavy-ion collisions provide an important means in the search for the conjectured critical end point (CP) in the QCD phase diagram. We propose a phenomenological model in which the fluct