ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher order net-proton number cumulants dependence on the centrality definition and other spurious effects

83   0   0.0 ( 0 )
 نشر من قبل Jan Steinheimer
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dependence of the normalized moments of the net-proton multiplicity distributions on the definition of centrality in relativistic nuclear collisions at a beam energy of $sqrt{s_{mathrm{NN}}}= 7.7$ GeV. Using the UrQMD model as event generator we find that the centrality definition has a large effect on the extracted cumulant ratios. Furthermore we find that the finite efficiency for the determination of the centrality introduces an additional systematic uncertainty. Finally, we quantitatively investigate the effects of event-pile up and other possible spurious effects which may change the measured proton number. We find that pile-up alone is not sufficient to describe the data and show that a random double counting of events, adding significantly to the measured proton number, affects mainly the higher order cumulants in most central collisions.



قيم البحث

اقرأ أيضاً

We study the influence of the centrality definition and detector efficiency on the net-proton kurtosis for minimum bias Au+Au collisions at a beam energy of $sqrt{s_{mathrm{NN}}}= 7.7$ GeV by using the UrQMD model. We find that different ways of defi ning the centrality lead to different cumulant ratios. Moreover, we demonstrate that the kurtosis is suppressed for central collisions when a wider transverse momentum acceptance is used. Finally, the influence of a detector efficiency on the measured cumulant ratios is estimated.
130 - V. Skokov , B. Friman , 2012
We consider the effect of volume fluctuations on cumulants of the net baryon number. Based on a general formalism, we derive universal expressions for the net baryon number cumulants in the presence of volume fluctuations with an arbitrary probabilit y distribution. The relevance of these fluctuations for the baryon-number cumulants and in particular for the ratios of cumulants is assessed in the Polyakov loop extended quark-meson model within the functional renormalization group. We show that the baryon number cumulants are generally enhanced by volume fluctuations and that the critical behavior of higher order cumulants may be modified significantly.
We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at sNN~= 7.7-200 GeV. Within the available acceptance of $|eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations and provide new insights on the energy dependence of baryon-strangeness correlations.
We propose a method to remove the contributions of pileup events from higher-order cumulants and moments of event-by-event particle distributions. Assuming that the pileup events are given by the superposition of two independent single-collision even ts, we show that the true moments in each multiplicity bin can be obtained recursively from lower multiplicity events. In the correction procedure the necessary information are only the probabilities of pileup events. Other terms are extracted from the experimental data. We demonstrate that the true cumulants can be reconstructed successfully by this method in simple models. Systematics on trigger inefficiencies and correction parameters are discussed.
Event-by-event fluctuations of the net-proton number studied in heavy-ion collisions provide an important means in the search for the conjectured critical end point (CP) in the QCD phase diagram. We propose a phenomenological model in which the fluct uations of the chiral critical mode couple to protons and anti-protons. This allows us to study the behavior of the net-proton number fluctuations in the presence of the CP. Calculating the net-proton number cumulants, $C_n$ with n=1,2,3,4, along the phenomenological freeze-out line we show that the ratio of variance and mean $C_2/C_1$, as well as kurtosis $C_4/C_2$ resemble qualitative properties observed in data in heavy-ion collisions as a function of beam energy obtained by the STAR Collaboration at RHIC. In particular, the non-monotonic structure of the kurtosis and smooth change of the $C_2/C_1$ ratio with beam energy could be due to the CP located near the freeze-out line. The skewness, however, exhibits properties that are in contrast to the criticality expected due to the CP. The dependence of our results on the model parameters and the proximity of the chemical freeze-out to the critical point are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا