ترغب بنشر مسار تعليمي؟ اضغط هنا

Pancharatnam-Berry phase in condensate of indirect excitons

104   0   0.0 ( 0 )
 نشر من قبل Jason Leonard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of the Pancharatnam-Berry phase in a condensate of indirect excitons (IXs) in a GaAs coupled quantum well structure. The Pancharatnam-Berry phase leads to phase shifts of interference fringes in IX interference patterns. Correlations are found between the phase shifts, polarization pattern of IX emission, and onset of IX spontaneous coherence. The Pancharatnam-Berry phase is acquired due to coherent spin precession in IX condensate. The effect of the Pancharatnam-Berry phase on the IX phase pattern is described in terms of an associated momentum.



قيم البحث

اقرأ أيضاً

Phase singularities in quantum states play a significant role both in the state properties and in the transition between the states. For instance, a transition to two-dimensional superfluid state is governed by pairing of vortices and, in turn, unpai red vortices can cause dissipations for particle fluxes. Vortices and other phase defects can be revealed by characteristic features in interference patterns produced by the quantum system. We present dislocation-like phase singularities in interference patterns in a condensate of indirect excitons measured by shift-interferometry. We show that the observed dislocations in interference patterns are not associated with conventional phase defects: neither with vortices, nor with polarization vortices, nor with half-vortices, nor with skyrmions, nor with half-skyrmions. We present the origin of these new phase singularities in condensate interference patterns: the observed interference dislocations originate from converging of the condensate matter waves propagating from different sources.
By quantizing the semiclassical motion of excitons, we show that the Berry curvature can cause an energy splitting between exciton states with opposite angular momentum. This splitting is determined by the Berry curvature flux through the $bm k$-spac e area spanned by the relative motion of the electron-hole pair in the exciton wave function. Using the gapped two-dimensional Dirac equation as a model, we show that this splitting can be understood as an effective spin-orbit coupling effect. In addition, there is also an energy shift caused by other relativistic terms. Our result reveals the limitation of the venerable hydrogenic model of excitons, and highlights the importance of the Berry curvature in the effective mass approximation.
Spin transport of indirect excitons in GaAs/AlGaAs coupled quantum wells was observed by measuring the spatially resolved circular polarization of exciton emission. Exciton spin transport over several microns originates from a long spin relaxation time and long lifetime of indirect excitons.
We present measurements of the Berry Phase in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. Our results demonstrate the remarkable degree of coherent control achievable in the presence of a highly complex sol id-state environment. We manipulate the spin qubit geometrically by careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting phase via spin-echo interferometry. We find good agreement with Berrys predictions within experimental errors. We also investigated the role of the environment on the geometric phase, and observed that unlike other solid-state qubit systems, the dephasing was primarily dominated by fast radial fluctuations in the path.
191 - Wang Yao , Qian Niu 2008
With exciton lifetime much extended in semiconductor quantum-well structures, their transport and Bose-Einstein condensation become a focus of research in recent years. We reveal a momentum-space gauge field in the exciton center-of-mass dynamics due to Berry phase effects. We predict spin-dependent topological transport of the excitons analogous to the anomalous Hall and Nernst effects for electrons. We also predict spin-dependent circulation of a trapped exciton gas and instability in an exciton condensate in favor of vortex formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا