ﻻ يوجد ملخص باللغة العربية
Topological semimetal may have substantial applications in electronics, spintronics and quantum computation. Recently, ZrTe is predicted as a new type of topological semimetal due to coexistence of Weyl fermion and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove mechanical stability of ZrTe, and the bulk modulus, shear modulus, Youngs modulus and Possions ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on Seebeck coefficient, which along a(b) and c directions for pristine ZrTe at 300 K is 46.26 $mu$V/K and 80.20 $mu$V/K, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with calculated value, the scattering time is determined for 1.59 $times$ $10^{-14}$ s. The predicted room-temperature electronic thermal conductivity along a(b) and c directions is 2.37 $mathrm{W m^{-1} K^{-1}}$ and 2.90 $mathrm{W m^{-1} K^{-1}}$, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 $mathrm{W m^{-1} K^{-1}}$ and 43.08 $mathrm{W m^{-1} K^{-1}}$ along a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces observable effect on lattice thermal conductivity. It is noted that average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Gr$mathrm{ddot{u}}$neisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe.
ZrSiS-type materials represent a large material family with unusual coexistence of topological nonsymmorphic Dirac fermions and nodal-line fermions. As a special group of ZrSiS-family, LnSbTe (Ln = Lanthanide rare earth) compounds provide a unique op
Three dimensional (3D) topological Dirac materials are under intensive study recently. The layered compound ZrTe$_5$ has been suggested to be one of them by transport and ARPES experiments. Here, we perform infrared reflectivity measurement to invest
Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gr
We have performed electron transport and ARPES measurements on single crystals of transition metal dipnictide TaAs2 cleaved along the ($overline{2}$ 0 1) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscil
Topological nodal-line semimetals support protected band crossings which form nodal lines or nodal loops between the valence and conduction bands and exhibit novel transport phenomena. Here we address the topological state of the nodal-line semimetal