ﻻ يوجد ملخص باللغة العربية
We present design and experimental validation of the system for the generation of the Orbital Angular Momentum (OAM) states using 3D-printed low-loss metamaterial phase plates for application in the terahertz (THz) wireless communications. By azimuthally varying the hole pattern density within the phase plate, the local effective refractive index is varied, thus also changing the local propagation constant in the azimuthal direction. The OAM of any topological charge can be created by simply varying the thickness of the phase plate. The phase plate with topological charge (m=1) is 3D printed and the amplitude and the phase of the terahertz signal after passing the plate is characterized using the THz-time domain imaging system. Finally, we present the experimental setup and theoretical simulation on the multiplexing and de-multiplexing of several different OAM states for applications in wireless terahertz communication.
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we multiplex and transmit four gree
Previous studies on orbital angular momentum (OAM) communication mainly considered line-of-sight environments. In this letter, however, it is found that OAM communication with high-order modulation can be achieved in highly reverberant environments b
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance he
Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamenta
Establishing and approaching the fundamental limit of orbital angular momentum (OAM) multiplexing are paramountly important and increasingly urgent for current multiple-input multiple-output research. In this work, we elaborate the fundamental limit